Taking Your Automation Framework to the Next Level Using Machine Learning
Automation fails frequently in companies due to a variety of reasons, including poor team communication, lack of skills, flaky tests, and inadequate understanding of test coverage. Even when things are going well, the automated tests sometimes grow to a size where the test suites take too long to execute for the run to be viable. James Farrier is a test automation architect who will show you ways to leverage machine learning to address these challenges. You'll learn how to determine which tests are valuable to run after each commit or build in order to cut down the suite run time, how to automatically close and open defects based on test run results, and how to separate a test into different test runs to keep track of tests in different states. Finally, he will show you how to create a results dashboard that allows for team collaboration and a better understanding of test coverage so that testing can be further streamlined. You will learn a robust variety of actionable machine learning techniques that can be applied to automated testing to dramatically increase the value you get from your automated testing.
Upcoming Events
Apr 27 |
STAREAST Software Testing Conference in Orlando & Online |
Jun 08 |
AI Con USA An Intelligence-Driven Future |
Sep 21 |
STARWEST Software Testing Conference in Anaheim & Online |
Recommended Web Seminars
On Demand | Building Confidence in Your Automation |
On Demand | Leveraging Open Source Tools for DevSecOps |
On Demand | Five Reasons Why Agile Isn't Working |
On Demand | Building a Stellar Team |
On Demand | Agile Transformation Best Practices |