

Suitable Development Processes

Dr. Erich Meier, method park Software AG

Abstract
If you ask computer users for their assessment of software, most are dissatisfied. Software is
seen as inconvenient, slow and plagued with errors. The aim of this article is to bring
together tried-and-tested measures for counteracting this phenomenon. In so doing, both
process standards and reference models such as CMMI® and SPICE™ will be analyzed, as
will agile methods.
Suitable development processes have a considerable influence on improving software
quality. Norms, standards and reference models may be used as building blocks of tried-and-
tested procedures for designing such processes. What is absolutely essential, however, is
the acceptance of the development processes among all those involved. The strategy for
making the processes known must, therefore, pay attention both to the automation of
process elements, as well as to adequate levels of method training and to optimum process
implementation. Process portals play a key role in this. The benefit to the user must always
be at the forefront of considerations.

Introduction
If you ask computer users who do not come from the IT industry about the reputation of
software and IT, the answer is often "bad" or "very bad". The situation is the same if you ask
users of cell phones or even normal car drivers about their experience with the respective
technologies. Typical comments include: “complicated operation”, “too slow”, “too prone to
errors”. Why is that so? Software Engineering has been developing technologies for usability
engineering, for requirements analyses and for designing reliable software for decades now.
Are they all unfit for use? Reference models such as CMMI or SPICE have been deployed
for a long time for improving development processes. Why is it that these efforts remain
almost fruitless?
The aim of this article is to bring together tried-and-tested measures for counteracting this
phenomenon.

In our experience, we have found that the actual reasons for the inadequacy of software lie
not so much in over-complicated technology or in the insufficient qualifications of developers
and engineers as in the lack of or incorrect use of development processes, for example, or of
technologies for requirements management, test management, usability engineering or
project management. If these technologies are used, the pendulum tends to swing in an
undesired direction, as applying them to the full often generates a multitude of additional
activities and documentation steps. These, in turn, are seen by the developer as superfluous
extra work, and they are thus carried out in a correspondingly unmotivated way and without
due care.
In short: one key lies in the definition of suitable development processes and in the
acceptance and implementation of these processes within the organization.

Norms, Standards and Reference Models
Are process standards helpful? Standards are a dime a dozen. In the area of safety alone
there are a multitude of standards (e.g. IEC 61508, EN 50128, IEC 60601). There are
standards for usability engineering (ISO 9241), for testing processes (TPI) and for project
management (ISO 10006 / ISO 10007). Fig.1 provides an impression of which standards are
currently influential on development processes in the automotive sector.
When asked for the essence of the safety standard, IEC 61508, safety expert, Günther Glöe,
from the TÜV Nord (= technical inspection agency for Northern Germany) provides a simple
answer: “The IEC 61508 demands engineering, and forbids just patching things together.” In
other words, it ensures controlled and methodical procedures that are carried out according
to plan instead of development at any cost. This statement may be applied to almost all
process standards and all software engineering technologies.
However, the IEC and ISO standards
are limited to abstract requirements,
particularly in the area of processes,
and seldom provide concrete
specifications on implementing them.
This is understandable considering the
lengthy time it takes to create a
standard. Under such circumstances,
the standard is unable to keep up with
the ever-changing state-of-the-art at
any one time.
This is also valid, in principle, for
process reference models such as
CMMI und SPICE, which contain a
multitude of specifications that
development processes need to fulfill.
They thus represent a collection of
“Best Practices” on the subject of
engineering. Are they then a solution to
the problem? The answer is “yes” insofar as the processes are more complete after
deploying the reference models than they were before, as they then demonstrate a certain
minimum standard. In spite of this, the reference models – like all norms and standards -
nevertheless remain on a relatively abstract level and hardly provide any concrete guidelines
on implementation.
Particularly problematic, however, are inexperienced assessors and auditors who work with
methods that are lacking in practical relevance, who merely stick to formal specifications, and
who thereby demand overly bureaucratic and unsuitable processes. It is a good sign that the
certification of iNTACS-SPICE assessors will, in future, ensure that the candidates are able
to demonstrate comprehensive practical experience in the development field, and not purely
in the area of quality assurance alone.

However, it must also be noted that, as experience has shown, good processes may well
ensure better products, but good processes alone are by far no guarantee for perfect
products.

Development
Processes

ISO 9001

CMMI
Company
Standards

IEC 61508

IEC 26262
ISO 9241

ISO TS 16949

SPICE

Fig. 1: Relevant process standards in the automotive
branch

Agile Methods
If one turns instead to the agile methods with their focus on lightweight procedures, it
becomes clear that they are developer-oriented, and thus they automatically enjoy a higher
level of acceptance within the development team. Agile methods (e.g. XP or SCRUM) have
influenced the design of processes in two main ways in the past, namely through test-driven
development and iterative-incremental procedures. The principle of covering all system
functionalities by means of automated tests contributes significantly to reducing the
proneness to errors of software products, while the emphasis on an iterative-incremental
procedure represents an important step towards creating a software product which fulfils the
requirements and expectations of its users.
Being too lightweight when it comes to method selection can lead to problems, however. At
the latest these become discernible if software systems need to be in operation for a long
period of time, i.e. for decades. It is no easy task to make changes to a system whose only
documentation consists of the program code and whose development team has, in the
meantime, scattered to the four winds.
It must be pointed out, however, that this is not an inherent problem of the agile methods

themselves. Rather, the blame lies with those users who falsely believe that using agile
methods means that no additional measures (e.g. methodical requirements analyses, design,
system documentation, traceability) are needed at all.

Much more of a problem is successfully implementing agile methods in development projects
which are distributed across several supplier companies and in which not only software but
complete systems are developed. This is the case in branches such as the automotive
industry in which the actual development of complete systems, such as electronic braking
assistants, is carried out by the supplier companies, with the automotive manufacturers
increasingly assuming the role of pure system integrators. The system suppliers, in turn,
draw upon specialist companies for a large proportion of the hardware and software they
require. Standard architectures such as AutoSAR, which aim to define combinable and
interchangeable components, will probably serve to reinforce this trend.
In such constellations it is almost impossible to establish agile principles such as the on-site
customer, who is available to the development team for information on system requirements

Pa

OEM

Pb

Supplier
Tier 1

Pc Pd

Supplier
Tier 1

Pe Pf

Supplier
Tier 1/2

Pg Ph

ANX1

1) Automotive Network eXchangeFig. 2: Connected processes for cross-company development processes

over a long time period. Rather, a sophisticated requirements management system needs to
be established which assists in meeting the flexibility required on the manufacturer side, and
which also helps to create the stability needed by the supplier. Possible approaches to
solving this challenge are currently being piloted in the automotive industry with the aid of the
standardized interchange format, RIF (Requirement Interchange Format).
General approaches towards managing such multi-tier development projects that are not
merely limited to requirements management are currently being discussed under buzzwords
such as “Connected Processes” or “Process Standardization”. The connected process
approach involves companies carrying out an initial standardization of their processes using
reference models such as SPICE. As a second step, they make the interfaces available to
their suppliers and couple the process results to each other. Fig. 2: Connected processes
for cross-company development processes illustrates this principle, with the electronic
market places in the area of procurement and logistics serving as a model.

Suitable Development Processes
The great challenge is now to learn both from standards and reference models, as well as
from the agile world. In other words, it is necessary to bring together the principle of process
orientation from the reference models with the right techniques and procedures from the
agile methods. In an ideal world, users would be part of the process without noticing it.
Which steps could we undertake to achieve this – admittedly ambitious – goal?

Firstly, here are two approaches which proved unfavorable in practice. On the one hand,
nothing is to be gained by defining development processes and then exerting pressure, with
those at the top decreeing that these processes be deployed by everyone. All this does is to
damage the process acceptance enormously. Developers are generally creative people, and
they will find ways and means of working around a process whose use has been decreed.
Secondly, processes should not simply be put together by consultants alone, as this is not
the road to process acceptance, either. Instead, what one will generally hear is statements
such as “That is all very well and good, but we do things completely different here”. It is thus
absolutely essential to take the time to work on a suitable development process in an
iterative way together with those involved and accompanied by experienced consultants.
“Suitable” in this context means that every process component must serve a worthy goal, or
to put it like Einstein: “…as simple as possible, but no simpler.” It is worthwhile recording this
goal, for example by means of a diagram of the process step according to SPICE, CMMI or
an IEC standard. In this way, it may be drawn upon again if necessary. To determine the
level of detail for the description, an inexperienced user should serve as the gauge. After
reading the process description, this user should be able to roughly find his/her way around
and to successfully carry out initial steps.
Furthermore, a suitable development process must also contain certain degrees of freedom
that enable users to adapt the process to their specific project situation, i.e. to carry out
process tailoring. These degrees of freedom should not be limited to merely being able to
omit one or two process steps, but must allow the user to really have an influence on the
process.
An experienced test manager once said of the process definition: “First be creative and then
bureaucratic, not vice versa.” In other words, define a good, suitable process and then stick
to it stringently. With many development processes, however, one has the impression that
bureaucratic process monsters have been created which are then taken apart, manipulated
or worked around by the users with astonishing levels of creativity.

Acceptance and Implementation of Development Processes
Once a suitable development process has been worked out, the question arises as to which
principles should be used to implement it, i.e. how can it be introduced into the organization?

The key to this is demonstrating the
value of the system by allowing people to
use it. If the process user recognizes that
added value is generated by deploying
the process (e.g. in the form of time
savings or better results), the most
important hurdle to acceptance has
already been overcome. In order to
convince the user of the benefits of the
process, process management tools are
usually deployed. In selecting such a
tool, the following three principles need
to be taken into account:

• Simplicity: access to the
development processes needs to
be quick and simple

• Adaptability: the process structure must be adaptable to the customer requirements

• Integration: the process design must be carried out in such a way that it integrates
with the existing IT environment and the existing tools

According to our analyses, the most important purpose of such tools is to gain rapid access
to the work products (e.g. project plan, test plan, requirements). The user is mostly seeking
as comprehensive an answer as possible to the questions: “What do I need to produce, and
when, how and why do I need to do this?” and: “Who or what can assist me?” Process
portals, as illustrated in Fig. 3: "project kit" process portal, can offer valuable services in
this context.
By the way, tools which whisper to the user, “Deploy me and you will have CMMI Level 5”
very rarely keep their promise!

In order to ensure that users are not overly burdened with additional work on top of their
actual development activities, parts of the development process need to run automatically as
far as possible. Examples include:

• Reviewing and approving documents

• Checking for consistency and process conformity (e.g. with QA-C or Checkstyle) –
and termination of the process in cases where non-conformities are determined.
From experience, warnings are usually ignored!

• No or only minimal manual efforts for metrics logging

However, it is not advisable to allow the development processes to run completely as
workflow, as they contain too many degrees of freedom for that. Complete automation would
either rob the process of all flexibility, or it would make the control of the process extremely
complicated. All trials in this direction that are known to us have failed.
In those areas where automation reaches its limits (e.g. constructing the architecture,
creating the design, compiling the test concept) optimum understanding of the process
among those involved in it must be achieved instead. Targeted process and process method
training (e.g. architecture and design, requirements management) are indispensable.
Furthermore, optimum process provision is also essential. The most important requirements
for a good process representation are:

• Intuitive representation of the entire process and of sub-processes (e.g. through role-
based views)

Fig. 3: "project kit" process portal

• No endless wallpaper-sized sheets of workflow, but short, concise activity lists

• Templates, checklists and example documents must be available and ready to hand.

• The process representation shows the tailored project process, and not just any
standard process, as a .pdf file

Parallel coaching measures to accompany the introduction of new processes are also
indispensable. The project leader must always highlight to the team the reasons for
introducing the development processes. Correctly designed checklists reduce hassle for the
process user, particularly in critical situations, as there is no danger of forgetting an important
step. However, it should not take half an hour to locate the right checklist only to be unsure
upon finding it as to whether it is the most up-to-date version, or not. A process management
system must ensure rapid and reliable access to all process components.
Process improvement also involves regularly questioning the meaningfulness of process
specifications. The correct use of a CIP (Continual Improvement Process) not only involves
adding activities, but also merging steps, as well as consistently deleting steps or even entire
process areas that are no longer relevant.

Summary
Suitable development processes have a considerable influence on improving software
quality. Norms, standards and reference models may be used as building blocks of tried-and-
tested procedures for designing such processes. What is absolutely essential, however, is
the acceptance of the development processes among all those involved. The strategy for
making the processes known must, therefore, pay attention both to the automation of
process elements, as well as to adequate levels of method training and to optimum process
implementation. Process portals play a key role in this. The benefit to the user must always
be at the forefront of considerations.
However, the prerequisite for successful process deployment is that those involved in the
process are also granted adequate time for their work. The proficiency and the will to deliver
high-quality work are almost always given.

