[image: image42.jpg]

[image: image43.jpg]

[image: image44.png]

[image: image45.jpg]

Table of Contents

21.0
Business need

22.0
Software Metrics

23.0
Importance of Metrics

34.0
Point to remember

35.0
Metrics Lifecycle

46.0
Type of Software Testing Metrics

46.1
Manual Testing Metrics

46.1.1
Test Case Productivity (TCP)

56.1.2
Test Execution Summary

56.1.3
Defect Acceptance (DA)

66.1.4
Defect Rejection (DR)

66.1.5
Bad Fix Defect (B)

76.1.6
Test Execution Productivity (TEP)

86.1.7
Test Efficiency (TE)

86.1.8
Defect Severity Index (DSI)

106.2
Performance Testing Metrics

106.2.1
Performance Scripting Productivity (PSP)

106.2.2
Performance Execution Summary

116.2.3
Performance Execution Data - Client Side

116.2.4
Performance Execution Data - Server Side

116.2.5
Performance Test Efficiency (PTE)

126.2.6
Performance Severity Index (PSI)

136.3
Automation Testing Metrics

136.3.1
Automation Scripting Productivity (ASP)

136.3.2
Automation Test Execution Productivity (AEP)

146.3.3
Automation Coverage

146.3.4
Cost Comparison

146.4
Common Metrics for all types of testing

146.4.1
Effort Variance (EV)

156.4.2
Schedule Variance (SV)

156.4.3
Scope Change (SC)

167.0
Conclusion

178.0
Reference

179.0
About Author

Software Testing Metrics

1.0 Business need
[image: image46.png]eTest Case
Productivity

e Test Execution
Summary

e Defect
Acceptance

e Defect Rejection
eBad Fix Defect

e Test Execution
Productivity

e Test Efficiency

e Defect Severity
Index

ePerformance
Scripting
Productivity

ePerformance
Execution
Summary

ePerformance
Execution Data -
Client Side

ePerformance
Execution Data -
Server Side

ePerformance Test
Efficiency

ePerformance
Severity Index

e Automation
Scripting
Productivity

e Automation Test
Execution
Productivity

e Automation
Coverage

e Cost Comparison

e Effort Variance

eSchedule
Variance

eScope Change

Increase in competition and leaps in technology have forced companies to adopt innovative approaches to assess themselves with respect to processes, products and services. This assessment helps them to improve their business so that they succeed and make more profits and acquire higher percentage of market.
Metric is the cornerstone in assessment and also foundation for any business improvement
2.0 Software Metrics
Metric is a standard unit of measurement that quantifies results. Metric used for evaluating the software processes, products and services is termed as Software Metrics.

Definition of Software Metrics given by Paul Goodman: -

Software Metrics is a Measurement Based Technique which is applied to processes, products and services to supply engineering and management information and working on the information supplied to improve processes, products and services, if required.
[image: image1.png]00

3.0 Importance of Metrics

· Metrics is used to improve the quality and productivity of products and services thus achieving Customer Satisfaction.

· Easy for management to digest one number and drill down, if required.

· Different Metric(s) trend act as monitor when the process is going out-of-control.

· Metrics provides improvement for current process.

4.0 Point to remember

· Metrics for which one can collect accurate and complete data must be used.

· Metrics must be easy to explain and evaluate.

· Benchmark for Metric(s) varies form organization to organization and also from person to person.

5.0 Metrics Lifecycle

The process involved in setting up the metrics:
[image: image2.png]ICommuniqué

Evaluating

Reporting

* Identify Metric(s) to use.
* Define Metric(s) identified.
» Define parameter(s) for evaluating the metric(s) identified.

 Explain the need of metric to stakeholder and the testing team.

¢ Educate testing team about the data points need to be captured for
processing the metric.

7
 Capture the data.
* Verify the data.
e Calculating the metric(s) value using the data captured.)
~

* Develope the report with effective conclusion.
e Distribute report to the stakeholder and their representative.
o Take feedback from the stakeholder.

6.0 Type of Software Testing Metrics

Based on the types of testing performed, following are the types of software testing metrics: -

1. Manual Testing Metrics

2. Performance Testing Metrics

3. Automation Testing Metrics
Following figure shows different software testing metrics.

[image: image3]
Let’s have a look at each of them.
6.1 Manual Testing Metrics
6.1.1 Test Case Productivity (TCP)

This metric gives the test case writing productivity based on which one can have a conclusive remark.

[image: image4.wmf]éù

êú

ëû

Total Raw Test Steps

Test Case Productivity =Step(s)/hour

 Efforts (hours)

Example
	Test Case Name
	Raw Steps

	XYZ_1
	30

	XYZ_2
	32

	XYZ_3
	40

	XYZ_4
	36

	XYZ_5
	45

	Total Raw Steps
	183

Efforts took for writing 183 steps is 8 hours.

TCP=183/8=22.8
Test case productivity = 23 steps/hour

One can compare the Test case productivity value with the previous release(s) and draw the most effective conclusion from it.

TC Productivity Trend
[image: image5.png]Step(s) / hour

40
35
30
25]
20
15
10

TC Productivity

9 20

23

1,_/

Oct-2008 Nov-2008

Release

Dec-2008

6.1.2 Test Execution Summary
This metric gives classification of the test cases with respect to status along with reason, if available, for various test cases. It gives the statical view of the release. One can collect the data for the number of test case executed with following status: -

· Pass.

· Fail and reason for failure.

· Unable to Test with reason. Some of the reasons for this status are time crunch, postponed defect, setup issue, out of scope.

Summary Trend

[image: image6.png]Test Execution Summary

Pass,SO\

Unableto
Test, 10

Fail, 10

One can also show the same trend for the classification of reasons for various unable to test and fail test cases.
6.1.3 Defect Acceptance (DA)

This metric determine the number of valid defects that testing team has identified during execution.

[image: image7.wmf]éù

êú

ëû

Number of Valid Defects

Defect Acceptance =*100%

Total Number of Defects

The value of this metric can be compared with previous release for getting better picture

Defect Acceptance Trend

[image: image8.png]Percentage

100

80

60

40

20

Defect Acceptance

Oct-2008 Nov-2008 Dec-2008

Release

6.1.4 Defect Rejection (DR)

This metric determine the number of defects rejected during execution.

[image: image9.wmf]éù

êú

ëû

Number of Defect(s) Rejected

Defect Rejection =*100%

Total Number of Defects

It gives the percentage of the invalid defect the testing team has opened and one can control, whenever required.

Defect Rejection Trend

[image: image10.png]Percentage

100

80

60

40

20

Oct-2008

Defect Rejection

125 12

Nov-2008 Dec-2008

Release

6.1.5 Bad Fix Defect (B)

Defect whose resolution give rise to new defect(s) are bad fix defect.

This metric determine the effectiveness of defect resolution process.

[image: image11.wmf]éù

êú

ëû

Number of of Bad Fix Defect(s)

Bad Fix Defect =*100%

Total Number of Valid Defects

It gives the percentage of the bad defect resolution which needs to be controlled.

Bad Fix Defect Trend

[image: image12.png]Percentage

10

ORrNWAUON®O

Bad Fix Defect

2
i

e

Oct-2008 Nov-2008 Dec-2008

Release

6.1.6 Test Execution Productivity (TEP)

This metric gives the test cases execution productivity which on further analysis can give conclusive result.

[image: image13.wmf]éù

êú

ëû

Total No. of TC executed (Te)

Test Execution Productivity =*8Execution

(s)/Day

Execution Efforts (hours)

Where Te is calculated as,

[image: image14.wmf]Te = Base Test Case + ((T (0.33) * 0.33)

 + (T (0.66) *0.66) + (T (1) * 1))

Where,

Base Test Case = No. of TC executed atleast once.

T (1) = No. of TC Retested with 71% to 100% of Total TC steps

T (0.66) = No. of TC Retested with 41% to 70% of Total TC steps

T (0.33) = No. of TC Retested with 1% to 40% of Total TC steps

Example
	TC Name
	Base Run Effort (hr)
	Re-Run1 Status
	Re-Run1 Effort (hr)
	Re-Run2 Status
	Re-Run2 Effort (hr)
	Re-Run3 Status
	Re-Run3 Effort (hr)

	XYZ_1
	2
	T(0.66)
	1
	T(0.66)
	0.45
	T(1)
	2

	XYZ_2
	1.3
	T(0.33)
	0.3
	T(1)
	2
	
	

	XYZ_3
	2.3
	T(1)
	1.2
	
	
	
	

	XYZ_4
	2
	T(1)
	2
	
	
	
	

	XYZ_5
	2.15
	
	
	
	
	
	

	Base Test Case
	5

	T(1)
	4

	T(0.66)
	2

	T(0.33)
	1

	Total Efforts(hr)
	19.7

 In above example,

Te = 5 + ((1*4) + (2*0.66) + (1*0.33))) = 5 + 5.65 = 10.65

Test Execution Productivity = (10.65/19.7) * 8 = 4.3 Execution/day

One can compare the productivity with previous release and can have an effective conclusion.

Test Execution Productivity Trend
[image: image15.png]Execution(s) / day

=

ORrNWAUON®OO

Test Execution Productivity

43
4
2 /’_—'
0Oct-2008 Nov-2008 Dec-2008

Release

6.1.7 Test Efficiency (TE)

This metric determine the efficiency of the testing team in identifying the defects.
It also indicated the defects missed out during testing phase which migrated to the next phase.

[image: image16.wmf]éù

êú

ëû

DT

Test Efficiency =*100%

DT+DU

Where,
DT = Number of valid defects identified during testing.
DU = Number of valid defects identified by user after release of application. In other words, post-testing defect

Test Efficiency Trend
[image: image17.png]Percentage

100

80

60

40

20

Test Efficiency

~— ~—

—
98 100 97
Oct-2008 Nov-2008 Dec-2008

Release

6.1.8 Defect Severity Index (DSI)

This metric determine the quality of the product under test and at the time of release, based on which one can take decision for releasing of the product i.e. it indicates the product quality.

[image: image18.wmf]éù

å

êú

ëû

(Severity Index * No. of Valid Defect(s)

 for this severity

Defect Severity Index =

Total Number of Valid Defects

One can divide the Defect Severity Index in two parts: -

1. DSI for All Status defect(s): - This value gives the product quality under test.
[image: image19.png]No. of Defect(s)

20

15

10

DSI for All Status = 2.8

Low Medium High Critical

Severity Level

2. DSI for Open Status defect(s): - This value gives the product quality at the time of release. For calculation of DSI for this, only open status defect(s) must be considered.

[image: image20.wmf]éù

å

êú

ëû

(Severity Index * No. of Open Valid Defe

ct(s) for this severity)

DSI(Open) =

Total Number of Open Valid Defects

[image: image21.png]No. of Defect(s)

DSl for Open Status = 3.0

Low Medium High Critical

Severity Level

Defect Severity Index Trend

[image: image22.png]Defect Severity Index

Critical
<
i ¢ Open Status, 3
gigh Allstatus, 28 P J
Medium

Low

From the graph it is clear that

· Quality of product under test i.e. DSI – All Status = 2.8 (High Severity)
· Quality of product at the time of release i.e. DSI – Open Status = 3.0 (High Severity)
6.2 Performance Testing Metrics

6.2.1 Performance Scripting Productivity (PSP)

This metric gives the scripting productivity for performance test script and have trend over a period of time.

[image: image23.wmf]éù

å

êú

ëû

Operations Performed

Performance Scripting Productivity =Oper

ation(s)/hour

 Efforts (hours)

Where Operations performed is: -

1. No. of Click(s) i.e. click(s) on which data is refreshed.

2. No. of Input parameter

3. No. of Correlation parameter

Above evaluation process does include logic embedded into the script which is rarely used.
Example
	Operation Performed
	Total

	No. of clicks
	10

	No. of Input Parameter
	5

	No. of Correlation Parameter
	5

	Total Operation Performed
	20

Efforts took for scripting = 10 hours.

Performance scripting productivity =20/10=2 operations/hour
Performance Scripting Productivity Trend
[image: image24.png]Operation(s) / hour

Perf. Scripting Productivity

—— —
18 2
15 :
0Oct-2008 Nov-2008 Dec-2008

Release

6.2.2 Performance Execution Summary

This metric gives classification with respect to number of test conducted along with status (Pass/Fail), for various types of performance testing.

Some of the types of performance testing: -

1. Peak Volume Test.

2. Endurance/Soak Test.

3. Breakpoint/Stress Test.

4. Failover Test

Summary Trend
[image: image25.png]No. of Test(s)

ok N W s U O

Execution Summary

@rass MFail

Peak StressTest Endurance FailOverTest
Volume Test Test

6.2.3 Performance Execution Data - Client Side

This metric gives the detail information of Client side data for execution.
Following are some of the data points of this metric -

1. Running Users

2. Response Time

3. Hits per Second

4. Throughput

5. Total Transaction per second

6. Time to first byte

7. Error per second
6.2.4 Performance Execution Data - Server Side

This metric gives the detail information of Server side date for execution.

Following are some of the data points of this metric -

1. CPU Utilization

2. Memory Utilization

3. HEAP Memory Utilization

4. Database connections per second
6.2.5 Performance Test Efficiency (PTE)

This metric determine the quality of the Performance testing team in meeting the requirements which can be used as an input for further improvisation, if required.

[image: image26.wmf]éù

êú

ëû

(Req met during PT) - (Req not met after

 Signoff of PT)

Performance Test Efficiency =*100%

Req met during PT

To evaluate this one need to collect data point during the performance testing and after the signoff of the performance testing.

Some of the requirements of Performance testing are: -

1. Average response time.

2. Transaction per Second.

3. Application must be able to handle predefined max user load.

4. Server Stability.
Example

Consider during the performance testing above mentioned requirements were met.

Requirement met during PT = 4

In production, average response time is greater than expected, then

Requirement not met after Signoff of PT = 1

PTE = (4 / (4+1)) * 100 = 80%

Performance Testing Efficiency is 80%

Performance Test Efficiency Trend
[image: image27.png]Percentage

100

80

60

40

20

Perf. Test Efficiency

96 100

80

Oct-2008 Nov-2008 Dec-2008

Release

6.2.6 Performance Severity Index (PSI)

This metric determine the product quality based performance criteria on which one can take decision for releasing of the product to next phase i.e. it indicates quality of product under test with respect to performance.

[image: image28.wmf]éù

å

êú

ëû

(Severity Index * No. of Req. not met f

or this severity)

Performance Severity Index =

Total No. of Req. not met

If requirement is not met, one can assign the severity for the requirement so that decision can be taken for the product release with respect to performance.

Example

Consider, Average response time is important requirement which has not met, then tester can open defect with Severity as Critical.

Then Performance Severity Index = (4 * 1) / 1 = 4 (Critical)

Performance Severity Trend

[image: image29.png]No. of Defect(s)

Perf. Severity Index = 4

Low Medium High Critical

6.3 Automation Testing Metrics

6.3.1 Automation Scripting Productivity (ASP)

This metric gives the scripting productivity for automation test script based on which one can analyze and draw most effective conclusion from the same.

[image: image30.wmf]éù

å

êú

ëû

Operations Performed

Automation Scripting Productivity =Opera

tion(s)/hour

 Efforts (hours)

Where Operations performed is: -

1. No. of Click(s) i.e. click(s) on which data is refreshed.

2. No. of Input parameter

3. No. of Checkpoint added
Above process does include logic embedded into the script which is rarely used.
Example
	Operation Performed
	Total

	No. of clicks
	10

	No. of Input Parameter
	5

	No. of Checkpoint added
	10

	Total Operation Performed
	25

Efforts took for scripting = 10 hours.

ASP=25/10=2.5
Automation scripting productivity = 2.5 operations/hour

Automation Scripting Productivity Trend
[image: image31.png]Operation(s) / hour

Auto. Scripting Productivity

/5

15 1.8

Oct-2008 Nov-2008 Dec-2008

Release

6.3.2 Automation Test Execution Productivity (AEP)

This metric gives the automated test case execution productivity.

[image: image32.wmf]éù

êú

ëû

Total No. of Automated TC executed (ATe)

Auto. Execution Productivity =*8Executi

on(s)/Day

Execution Efforts (hours)

Where ATe is calculated as,

[image: image33.wmf]ATe = Base Test Case + ((T (0.33) * 0.33

) + (T (0.66) *0.66) + (T (1) * 1))

Evaluation process is similar to Manual Test Execution Productivity.
6.3.3 Automation Coverage
This metric gives the percentage of manual test cases automated.

[image: image34.wmf]%

éù

êú

ëû

Total No. of TC Automated

Automation Coverage =*100

Total No. of Manual TC

Example

If there are 100 Manual test cases and one has automated 60 test cases then Automation Coverage = 60%
6.3.4 Cost Comparison

This metrics gives the cost comparison between manual testing and automation testing. This metrics is used to have conclusive ROI (return on investment).
Manual Cost is evaluated as: -

Cost (M) =
Execution Efforts (hours) * Billing Rate

Automation cost is evaluated as: -

Cost (A) =
Tool Purchased Cost (One time investment) + Maintenance Cost

+ Script Development Cost

+ (Execution Efforts (hrs) * Billing Rate)

If Script is re-used the script development cost will be the script update cost.

Using this metric one can have an effective conclusion with respect to the currency which plays a vital role in IT industry.
6.4 Common Metrics for all types of testing
6.4.1 Effort Variance (EV)

This metric gives the variance in the estimated effort.

[image: image35.wmf]éù

êú

ëû

Actual Effort - Estimated Effort

Effort Variance =*100%

Estimated Effort

Effort Variance Trend

[image: image36.png]Hour(s)

120
100
80
60
40
20

Effort Variance

—_—

100 105

Estimated Effort Actual Effort

6.4.2 Schedule Variance (SV)

This metric gives the variance in the estimated schedule i.e. number of days.

[image: image37.wmf]éù

êú

ëû

Actual No. of Days - Estimated No. of Da

ys

Schedule Variance =*100%

Estimated No. of Days

Schedule Variance Trend

[image: image38.png]Day(s)

14
12

oN B O ®

Schedule Variance

— %,

10

Estimated Days Actual Days

6.4.3 Scope Change (SC)

This metric indicates how stable the scope of testing is.

[image: image39.wmf]éù

êú

ëû

Total Scope - Previous Scope

Scope Change=*100%

Previous Scope

Where,

Total Scope = Previous Scope + New Scope, if Scope increases

Total Scope = Previous Scope - New Scope, if Scope decreases

Scope Change Trend for one release
[image: image40.png]Total Scope(s)

[T
SIS

oN B O ®

Scope Change

./1‘2\'

10

il

01-Dec-2008 11-Dec-2008

19-Dec-2008

7.0 Conclusion

Metric is the cornerstone in assessment and foundation for any business improvement. It is a Measurement Based Technique which is applied to processes, products and services to supply engineering and management information and working on the information supplied to improve processes, products and services, if required. It indicates level of Customer satisfaction, easy for management to digest number and drill down, whenever required and act as monitor when the process is going out-of-control.

Following table summarize the Software testing metrics discussed in this paper:

	Test Metric
	Description

	

	Manual Testing Metrics

	Test Case Productivity
	Provides the information for the number of step(s) written per hour.

	Test Execution Summary
	Provides statical view of execution for the release along with status and reason.

	Defect Acceptance
	Indicates the stability and reliability of the application.

	Defect Rejection
	Provides the percentage of invalid defects.

	Bad Fix Defect
	Indicates the effectiveness of the defect-resolution process

	Test Execution Productivity
	Provides detail of the test case executed per day.

	Test Efficiency
	Indicates the testing capability of the tester in identifying the defect.

	Defect Severity Index
	Provides indications about the quality of the product under test and at the time of release.

	Performance Testing Metrics

	Performance Scripting Productivity
	Provides scripting productivity for performance test flow.

	Performance Execution Summary
	Provides classification with respect to number of test conducted along with status (Pass/Fail), for various types of performance testing.

	Performance Execution Data - Client Side
	Gives the detail information of Client side data for execution

	Performance Execution Data - Server Side
	Gives the detail information of Server side data for execution

	Performance Test Efficiency
	Indicates the quality of the Performance team in meeting the performance requirement(s).

	Performance Severity Index
	Indicates quality of product under test with respect to performance criteria.

	Automation Testing Metrics

	Automation Scripting Productivity
	Indicates the scripting productivity for automation test script.

	Auto. Execution Productivity
	Provides execution productivity per day.

	Automation Coverage
	Gives percentage of manual TC automated

	Cost Comparison
	Provides information on ROI

	Common metrics for all types of testing

	Effort Variance
	Indicates effort stability

	Schedule Variance
	Indicates schedule stability

	Scope Change
	Indicates requirement stability

Thus, Metrics help organization to obtain the information it needs to continue to improve its processes, products and services and achieve the desired Goal as:
"You cannot control what you cannot measure" (Tom DeMarco)
8.0 Reference

http://www.prosci.com/metrics.htm
http://www.westfallteam.com/Papers/
http://www.stpmag.com/downloads/stp-0507_testmetrics.htm
9.0 About Author

A Cognizant India Test Engineer with over 3.5 years of proven Quality and Test management experience in the Financial Services sector. Consistently developed and implemented new ideas and techniques which have lead to dramatic Quality improvement within the projects. Published two whitepapers: Customer Satisfaction through Quality Index and Sanity Testing which are available at: -

http://www/projectperfect.com.au/info_quality_index.php and

http://www.stickyminds.com
To reach email at: - Lokesh.gulechha@cognizant.com[image: image41.png]

Lokesh Gulechha

Associate

Abstract

Effective management of any process requires quantification, measurement and modeling. Software Metrics provide quantitative approach to the development and validation of the software process models. Metrics help organization to obtain the information it needs to continue to improve its productivity, reduce errors and improve acceptance of processes, products and services and achieve the desired Goal.

This paper addresses metrics lifecycle, various software testing metrics, need for having metrics, evaluation process and arriving at ideal conclusion.

�

Cognizant Technology Solutions

Plot No. 26,

Rajiv Gandhi Infotech Park,

MIDC, Hinjewadi,

Pune-411057 (INDIA)

+91-20-22931100

Software Testing Metrics

_1291212300.unknown

_1291213896.unknown

_1292075975.unknown

_1292945612.unknown

_1297666004.unknown

_1292745661.unknown

_1291214480.unknown

_1291220971.unknown

_1291214466.unknown

_1291213202.unknown

_1291213796.unknown

_1291213055.unknown

_1291212266.unknown

_1291212279.unknown

_1291212287.unknown

_1291212273.unknown

_1291212244.unknown

_1291212252.unknown

_1291212235.unknown

