SOFTWARE TESTING

ANALYSIS & REVIEW

F3

Concurrent Session
Friday 10/26/2007 10:00 AM

JUMP TO:
Biographical Information

The Presentation

50 Ways to ... Improve Test
Automation

Presented by:

Mark Fewster,
Grove Consultants

Presented at:
The International Conference on Software Testing Analysis and Review
October 22-26, 2007; Anaheim, CA, USA

SOFTWARE

QUALITY

330 Corporate Way, Suite 300 , Orange Park, FL 32043
888-268-8770 = 904-278-0524 = sqgeinfo@sge.com * www.Sge.com



mailto:sqeinfo@sqe.com
http://www.sqe.com

Mark Fewster

Mark has 20 something years of industrial experience in software testing. Since
joining Grove Consultants in 1993, he has provided consultancy and training in
software testing, particularly in the application of testing techniques and test
automation. He has published papers in respected journals and is a popular speaker
at national and international conferences and seminars. Mark is co-author of the
book "Software Test Automation” with Dorothy Graham, published by Addison-
Wesley. In 2006 he received the Mercury BTO Innovation in Quality Award.



STAR West 2007

Fifty Ways to ...
Improve Test Automation

Prepared and presented by

Mark Fewster

Grove Consultants

Liwyncynhwyra, Cwmdu
Llandeilo, SA19 7TEW, UK
Tel: +44 1558 685180
email: mark@grove.co.uk

Www.grove.co.uk
© Grove Consultants, 2007




Key Areas

planning and management
scripting techniques
comparison methods

pre- and post-processing
testware architecture
testware maintenance




Planning and management

= weaknesses

mixed (or no) VIews on
objective(s)

unclear (or ne) specific
responsibilities
suljective measurement

VVague (er no)
development plans

dUONEMOUS rEsoUCe

= Improvement areas

define, guantify, agree
objectives

assign specific
responsibilities
objectively measure
PEnefilts & costs
IMProve autemation
capanilities

DECOME. SEIVICE provider




Management improvements

« define, quantify, agree objectives

- must be appropriate and specific to automation

* e.0. reduce automated test cost, Increase
automated test benefit, contribute to testing

* not e.q. reduce elapsed time, find more defects,
Impreve seitware: quality.

= assign specific responsibilities
- separate respensinilities; off testing|and autemating

* iVide ORe PErSeNS time hetween testing and
alltemating lifnecessaly.




Management improvements

= Objectively measure benefits and costs

- equivalent manual test effort (EMTE)
* easy te measure and understand

- punld; farlure analysis and maintenance costs
®* Majol cost factors for autemation

= Improve automation capabilities
- moere flexipility, vetter reporting, new: capanilities

- grealer SCope — Seek epportunIties veyend major
1ools (e.g. utilitres; te)assist Wit tester Chores)




Further improvement ideas

= pilot (yes, another one)
- small scale (1 — 3 months for 2 or 3 people)
- not on critical path but able to contribute
* freedom to experiment Important
- weekly: milestones
* @ally targets?
- Specific Imprevement goals

* c.0) reduce: pulld cost (explore: schpling techs.)
lediuce mamienance cost (explone test desion)




Scripting techniques

= weaknesses = improvement areas

chaotic / disorganised -

lack of coding standards
/'guidelines

100 much; test specific
scripting (lack of reuse)

little or noicontrel over
Updates

consistancy / standards /
guidelines

leviews to check
acceptanility

appropriate technigues

configuration
management




Scripting Improvements

= Scripting (coding) standards / guidelines

- developed by consensus

* |dentify selection of goed examples, agree what
makes them good
— naming conventions (variable, functions, scripts)

* measure and check (automated / teol Supporied)
— Size, complexity, header, comment/code ratio

* |Ustiiy standards, templates
« formally review samples
- [nfermally review (lnuday: Check) elners




Scripting Improvements

= appropriate techniques

- structured scripting, data-driven, keyword-driven
* perhaps combine technigues

- common language for defining tests
* driven by testers; noet autematers

= configuration management
- at Ieast source: code control
- PrOCEdUres / ProCeSses
- 10061 suppert essential




Comparison methods

= Wweaknesses = Improvement areas
lack of reuse - Identify definitive

too few: solutions / lack COMpParison req-s.
of Ingenuity e creative, divide

too many different complex prioblems
selutions, (for same standaraise

problem) tool support tester tasks

100 MUChIWOorK for
testers




Comparison improvements

= Identify definitive comparison requirements
- finite set of output types for each application
= be creative, divide complex problems

- Undertake complex comparisens In bits

* @divide output Into separate PIeEces
— e.g. report header and body.

* compare different aspects separately,
— e.g. key transactions and everall balance

- Se scripting languages and reguiar expressions
* c.0 Penl; Pyinen, Ruly, elc.




Comparison improvements

« Standardise
- define standard comparisens for each output type
- Implement a comparisen process for each one

« tool support tester tasks

- testers need only: state which outputs are
compareadiand With WhICH Comparisen pProcess

* (00]S sheuld determminelocation Gl les
— reguires consistent testware architecture




Pre- and post-processing

= weaknesses = improvement areas

- not formalised (not - recognise and formalise
recognised) setup andi clear up tasks

manuall set up and clear - automate setup andi clear
Up. pronge ter human errer up tasks

lest specific - encourage reuse

Implementations - automate as many. non-
duplicatebuild and execution tasks as

maintenance erfort practical
|otS off autemated tests

put little automated

testing




Pre & post-processing improvements

= recognise and formalise setup and clear up
tasks

- many tasks similar
* .0, meve, copy, create, delete, convert

= automate setup and clear up tasks
- easy e doe
- easy/ temake generic




Pre & post-processing improvements

= encourage reuse

= automate as many non-execution tasks as
practical

- Including checking




Testware architecture

= Wweaknesses
- disorganised / scattered

= Improvement areas
- structured and consistent

testware makes tool
support difficult

hard to find scripts / data
for reuse and
malntenance

unclear hew: te name
andlplacernew: artefacts

adlifficult te track cnanges
andlcontrel Updates

testware organisation

erganise testware around
testers, not test tools

clear (decumented)
naming|cenventions

keep all testware under
configuration
management




Testware architecture improvements

s Structured and consistent testware
organisation

- consistent across applications, projects, etc.
- enables reuse and sharing of teels and methods

- makes tool support much;easier and more
effective

= Organise testware around testers, not tools
- Ergenemics ofi testware: reduce cost off test Wolk




Testware architecture improvements

= Clear (documented) naming conventions
- removes alll the guess work

= keep all testware under configuration
management

- ati least version contrel but more sephisticated
selutionsiaddimore value: (reduce human; errer)

* Map VErsiens of lestware o) VEersIons) ol seliware
- [elps Wit estimation of maintenance: effort




Testware maintenance

= weaknesses

- more reactive than
proactive

- [Maintenance costs
iegarded as Inevitaile,
andse unchallenged

- [rUe costs not measured

- maintenance effort not
well supporied by teols

= Improvement areas

- manage and monitor
testware maintenance

- consider maintenance
Implications during test
design

- measure maintenance
costs and! learn

- previde tool support for
malntenance: tasks




Testware maintenance improvements

= Mmanage and monitor testware maintenance
- 1dentify most vulnerable tests / applications
* Dy type
- focus Improvement effort on maintenance ISSUes
* spend some time Investigating selutiens

= consider maintenance implications during
test design

- [dentiiiy/ seftware: changes With' greatest Impact
- Implement autemation te: mIRIMISE thellr Inpact




Testware maintenance improvements

= Mmeasure maintenance costs and learn

- measure costs
* most freguent / largest maintenance tasks
* as prepoertien of EMTE

= provide tool support for maintenance tasks
- for most frequent / time: consuming tasks

- SEME may. loe ene-ofifi (Single use)
* Needsi programming skl (nght place and tme)




Fifty Ways to .

many aspects of t
- IManagement, scri
most fundamenta

.. Improve Test Automation

Summary

est automation to consider
oting, processing, architecture, maint.
pitfalls

pensIbIlities

- Objectives and res

test automation is an ongoing process
- muehIto learn;, nNew eppertunities; ter han/est

Invest in automati

on, don’t stand still

- Ig rewarasiare possihle




	TITLE PAGE
	BIO
	PRESENTATION



