Automating Test Case Generation in a Pattern-Based Development Environment

By Tim Van Tongeren

Using the COOL:Plex software package (formerly Obsydian) from Sterling Software (which is being acquired by Computer Associates), we were developing pattern-based applications for the AS/400. We used COOL:Plex's sister product, Websydian, for generating Web-based software. Using a model-based approach, these products define and reuse business patterns, which are ideal for rapid application development (RAD). Additionally, with these products we could develop the software in a platform-independent manner and port it out to NT, AS/400, or Java OS using HTML, RPG, C++, or Java.

The software we were developing created business-rule-driven applications based on the customer's unique requirements. Selecting from a list of available features (patterns), the customer could design an application that fit their business needs. From a software quality assurance standpoint, the bulk of our work was early on in the project, testing the initial patterns. We had to test each individual business rule, and combination of business rules the patterns could produce. Occasionally, a customer would require a custom feature, but the additional testing required was minimal. We had five to eight testers on the team.

Testing the primary base of patterns took nine months. Subsequent applications developed with the same patterns only took one or two months to test. These tests were primarily to test interfaces with the customer's legacy applications, since we had already verified that the patterns worked. Even though we were generating applications with amazing speed, it seemed like we were still doing many tasks manually.

More Rapid than Rapid

Let me define a few terms before I go on. Many companies use these terms interchangeably, so I will tell you my definition for the purpose of this article.

A test plan is the document that details the method the quality assurance (QA) group uses to verify the system requirements and design. Our test plans were composed of several test cases. These test cases were a high-level chronological description of each scenario or use-case we planned to address. Each test case was made up of test scripts, which were instructions for the tester to follow in order to complete the desired scenario. The test scripts would have the preconditions, steps to take, and expected results. With the entire test plan, a QA analyst would immediately know the steps he or she must take to test the system.

As mentioned, the automation in the code development arena was not reciprocated in the QA arena. We still generated a test plan by hand based on the customer's requirements. These test plans started looking very similar to previous plans and sometimes we would simply cut and paste large portions of the plan.

That's when we realized that since the software was being developed based on reusable patterns and models, the test effort should be also. We needed to set up a tool that would generate test cases based on the same patterns. I wrote an application that had a checklist of the possible features, based on the models and patterns. The program then generated test cases based on the selected features. Each system pattern in the coding tool had at least one matching test case. Some test cases were the result of combinations of patterns in the coding tool. Some test cases were the result of combinations of excluded patterns in the design tool.

The program also looked for potential design flaws by identifying mutually exclusive and mutually mandatory pattern combinations. The payoff was evident. Instead of the usual day or two to create test plans, we were able to generate a plan in less than 30 minutes. This had an immediate impact on productivity.

The quality of the test plans also increased. Rather than relying on the tester's knowledge of the application and the tester's memory, the system would remember all of the interdependencies and combinations. Since the rules were based on the primary patterns, they were not going to change often, so the test case generator would not have to be modified regularly.

We realized so much improvement by automating code generation and test case generation that we started examining the entire process. We aspired to automate the entire life cycle on our project, but unfortunately, the application was using proprietary objects that automated test tools didn't recognize. Most test tools use standard Windows objects, whereas COOL:Plex creates its own objects. Subsequently, the only automated testing we were able to perform was bitmap comparisons and window existence tests.

We also experienced increased teamwork between the developers and testers. Since we were always using the same reference point, the pattern, we had a common language. Many times conflicts arise between QA and development because of misunderstandings or differences in terminology. By having the same reference point, we were able to minimize that.

Management was extremely happy with the improvements as well. Not only could we generate test plans quickly and accurately, we were able to give better estimates on the time required to complete the tests. Since the tests were consistently based on the features selected, a predetermined average time could be allotted for each test. Based solely on the requirements, one could derive all the code, test cases, and a fairly accurate timeline for implementation.

Further Improvements

If you are considering implementing this method in your shop, you can improve the cycle even more by automating more of the process. A program could be written that collects the requirements, feeds the requirements to COOL:Plex and a test case generator, deploys the code, executes the tests, and generates an error report.

Rather than having a checklist of features, the test case generator could draw directly from the requirements. With only one place to specify the requirements, the system could use the same resource to generate the application and the tests required for the application. This would reduce inconsistencies by having only one reference point. This phase of the life cycle could be done in a tool like Rational Requisite Pro from Rational Software Corp., Cupertino, Calif., or even a tool written in-house.

Once the requirements have been specified, the code and test cases would be generated. The test case generator could draw its data directly from the models and patterns in the development tool, rather than static logic. This way, if the model or patterns were changed, the test case generator would inherit those changes. When new features are added, the test case generator would have them as an option. Additionally, it could inherit all of the logic directly from the model, so if the logic were changed, the test case generator would inherit those changes as well. This test plan would be printed so the testers could evaluate the automated testing coverage. Any manual testing could be performed later based on this analysis.

In addition to creating test cases, the system could generate actual test code for an automated testing application such as WinRunner from Mercury Interactive Corp., Sunnyvale, Calif., Test Studio (formerly SQA Team Test) from Rational Software, or SilkTest from Segue Software, Lexington, Mass. Since applications are based on the cookie-cutter patterns, the test scripts could invoke prewritten functions required to test each pattern, depending on which features were selected for this application. Once COOL:Plex or your development tool of choice has generated and deployed the code to the test region, the test code could be executed. The automated testing tool will generate reports of defects found during the test. Using this method, the automated testing portion of a QA effort would probably be completed in a 24-hour period. Then manual testing could be performed if necessary. Finally, the same test code could be pared down for any necessary post-implementation testing required in production after the software goes live.

Some people may be tempted to automate the entire process from requirements to implementation, but from my experiences in test automation, a human will usually find defects the system doesn't. I would recommend still having a manual test stage before implementation. This can even be a user acceptance test for the client to test drive their new application. For this reason I would exclude configuration management from the automation process, except for maybe from the development to the quality assurance regions. However, if you are interested in automating even more of the process than described here, you might consider looking at integrating project management tools, defect tracking tools, metrics, and risk management.

You may already consider software packages that have prebuilt integration. Some companies develop tools that integrate from the requirements to the testing to the defect tracking stage. If you can afford a solution like this to get started, then you can simply integrate the development environment and the in-house test case generator. This should reduce your effort significantly.

An Example

Let's go through an example application development life cycle, to get an idea of how this works. A wireless telephone company may ask you to build a database for their customers. Since you have the patterns ready, you hand them a checklist of features they might want in the product, such as "collect customer's home address," "collect work address," "collect credit history," "track call length," "track call destination," "generate monthly bills," "10 cents per minute," "domestic customers only," and so on. The customer would fill out this checklist (on paper or on the Web) and the application development process would begin.

Once the features were entered in the requirements gathering tool, they would feed straight into the development environment. This tool would generate the code based on the features selected. It would also send all of the logic from the development tool and the features to the test case generator.

This tool would then create test cases based on the features:

· Verify that the customer address cannot be foreign (based on the "home address" and "domestic customer only" features/rules). 

· Verify that phone bills have the correct total (based on the "track call length" and "10 cents per minute" features/rules). 

· The tool would also make sure that when "10 cents per minute" is selected, that "track call length" is also captured, since it would be impossible to charge per minute if the duration was not captured. 

There would be many more tests and the test case generator would create them all. It would also create the test code necessary to test them in the automated test tool.

Meanwhile, the development tool would have generated the code into a test region. Once the compile was complete, the automated test tool would execute its test scripts and generate a report of any defects. The defects and the test plan would be printed for the QA analyst to review for any extra tests to be performed. Within a day or two after the requirements had been finalized, the customer could return to try on their new system. Now that's rapid!

Bottom Line Impact

By automating the process to this extreme, the software development company would be able to spend more time working on requirements than on generating the application. This part of the process is, after all, the most important part—determining what the customer wants the application to do. Then literally days later, a fully developed application would be finished. With such rapid development, this could almost be treated like a prototyping life cycle. When the customer has some changes, a new application could be generated and tested in just a few more days. Costs would be lower because of increased quality and increased productivity, and errors would be being found earlier in the development lifecycle.

When you are working in a RAD environment, good ideas spawn other good ideas. Since you are constantly around innovative methods, it makes you consider your own methods. Timesaving devices we noticed in the coding stage could be applied to the testing stage. Once you are working in a RAD environment, new ideas will be apparent that can be applied to other areas. Just keep your eye out for opportunities to cross-train these good ideas. If you have any ideas on how to further improve this methodology, I would like to hear about it. Contact me at timv@usa.net.

Originally published in Apr/May 2000 Software Magazine

