
Efficient Configuration Test Automation Using Virtual Machines
Vladimir Belorustes, Ph.D.

Plaxo, Inc.

Vladimir Belorusets has more than two decades of extensive experience in software

development, test automation, test management, and software engineering methodology.

He earned his Ph.D. in control systems from Moscow Institute for Systems Analysis,

Russian Academy of Sciences. Vladimir held different positions from Senior Software

Engineer to Director of Software Quality Assurance in various Silicon Valley high-tech

companies. He also taught numerous courses in functional and performance test

automation in Bay Area computer schools. Vladimir can be reached at

vladimir100@hotmail.com

 Statement of the problem. According to the Sky I.T. Group, in today’s latest

web development environments, there are over 7000 possible configurations of Operating

Systems, Browsers, Screen Resolutions and other unique characteristics.

 How to produce all these different environments? The traditional way is to build a

big test lab equipped with various hardware and software configurations supported. This

approach has obvious limitations. The created environment is: 1) hard to replicate; 2)

hard to maintain; and 3) hard to share for team testing.

Indeed, to replicate a testing environment, you need to buy another set of identical

hardware. This is a costly solution. A maintenance problem arises with the software

upgrades. For example, if you upgrade Internet Explorer to a newer version, you are no

longer able to restore the previous version in the same environment. In addition, only one

SQA engineer can work with a given hardware at a time. This cause prevents parallel

testing in the same environment.

Our efficient solution for all these problems is based on use of Virtual Machines

with pre-installed commercial functional test automation tools. This approach has the

following advantages: 1) Virtual Machine is software; 2) you can easy replicate any

environment just by copying the VMware from one computer to another; 3) you have a

separate VMware image for each software upgrade; 4) copying of Virtual Machines

 2

decouples team testing, all SQA Engineers work in parallel with their personal copies of

Virtual Machines.

We used VMware Workstations from VMware, Inc. to create test environments

with different Operating Systems. The VMware software allows multiple Operating

Systems and software applications to run concurrently in Virtual Machines on a single

Intel-based computer. The functional test scripts were developed with WinRunner from

Mercury Interactive. The whole test framework was written in the WinRunner’s Test

Script Language (TSL).

 We created a library of Virtual Operating Systems (VOSes) for configuration

testing that contained WinRunner pre-installed on each VOS. That library copied to each

test computer. All test scripts were stored for sharing in a central repository on a network

and were accessible to any regular Operating System and all VOSes. Another important

characteristic of our architecture is that we separated scripts and their data. The scripts

are reusable without changes on any test machine. On the contrary, all test machine

specific data are stored under another network directory different for each test machine.

For a startup company with limited recourses and budget, test automation is the

only choice to assure quality of the product for many different configurations. The Plaxo

Contacts application from Plaxo, Inc. is a new tool that enables you to automatically

update your address book on different mailing clients and the web. It should work with

various versions of MS Outlook, MS Outlook Express, and other mail clients on different

Operating Systems and browsers. We support about 30 different configurations. This

number will grow in the future. The goal of this paper is to present architecture for an

efficient flexible automation framework for configuration testing developed and deployed

at Plaxo.

How Does It Work?

General picture. The TSL program that runs within a regular Operating System

on each test computer and controls the VOSes on that computer is called VMware Driver.

The function of the driver is to start a VOS and wait for a response indicating that all the

 3

tests on that VOS are completed. Then the driver runs the next VOS from the list of

VOSes written in its data file. An example of the VMware Driver data file is:

 1=Windows 2000 Professional

 2=Windows NT

 3=Windows XP Professional

It specifies what VOSes and in which order to run on that test machine.

Once a VOS is launched, it automatically starts WinRunner with a script called

Bootup Driver. The Bootup Driver reads its data file that contains a list of test scripts to

perform for the VOS and executes them. When the tests are finished, the results are

generated on a local network share in order to be available for a later review in a regular

environment. The results for each VOS are stored in separate directories. Then, the

Bootup Driver shuts down the VOS, and passes control to the VMware Driver (Figure 1).

All VOSes run in a consecutive order, with no two VOSes running concurrently.

If you need to test another version of the application, you can either update an existing

VOS image, or create a new one and add it to the VMware Workstation list (Figure 2).

We separate scripts and machine-specific data. This way, all scripts are reusable.

They are shared from one central repository. At the same time, each test machine is

associated with a separate repository containing its unique test data.

By convention, we store the scripts on a logical network drive Q and all data on a

logical network drive Z. The drive Z contains the physical machine’s name in its path.

The mapping to Z is different from one test machine to another. For example, test data for

a computer called Vladimir is stored in the directory: \\Test_Machine_Data\Vladimir\,

which is the drive Z for Vladimir, but for another computer Tony, the data are in the

directory \\Test_Machine_Data\Tony\, which is the Tony’s drive Z (Figure 3). On the

other hand, mapping to Z is the same for all VOSes running on one test machine. The

structure of the data directories on Z is identical for all virtual environments.

Because of that mapping, all scripts are always loaded from the drive Q and they

are designed to always read data from the drive Z defined at the VOS setup stage.

How to Start WinRunner And Bootup Driver within VOS?

 4

 There are two ways to start WinRunner together with a predefined script (Bootup

Driver) within a VOS.

The first option is to use a registry entry

[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run],

where you specify a command line under a custom key, like WinRunner=C:\Program

Files\Mercury Interactive\WinRunner\arch\wrun.exe -t Q:\Bootup_Driver -run -verify

results_directory. The drawbacks of this approach are: you can modify the command

only within the VOS registry, and you must restart the VOS in order for the new settings

to take place.

 The second option is much more flexible. For each VOS, the VMware Driver

dynamically generates a batch file current_startup.bat on the drive Z. It contains a

command to launch WinRunner with the Bootup Driver and put the test results in a

specified directory. We adhere to convention to name the result directory by the name of

the VOS in the VMware Workstation window (Figure 2).

At the VOS image setup stage, we create a shortcut to the current_startup.bat

within the VOS Startup menu. When the VOS starts, this file will be executed

automatically. We can also easily edit the batch file on the drive Z without opening the

VOS. To run any new batch commands on the opened VOS, you do not need to restart it.

All you need to do is to execute that batch file through the VOS Startup menu.

When all tests on the current VOS are completed, the current_startup.bat file is

deleted. It will be regenerated for the next coming VOS.

You also need to configure each VOS to start without requiring user intervention

such as entering a password.

How to Shut Down VOS from the Script?

We pre-installed a special, Operating System-dependent shutdown utility on each

VOS image. To shut down a VOS programmatically from the Bootup Driver script, we

simply invoked the corresponding utility.

 5

There are many such freeware utilities available over the web. At Plaxo, we used

the Psshutdown from SysInternals (www.sysinternals.com) for Windows 2000, XP, and

NT, and Quick ShutDown from Shatran Software (www.winutility.com) for Windows 98.

How to Synchronize Drivers in Regular Environment and VOSes?

 There is an architectural challenge on how to inform the VMware Driver that the

Bootup Driver in a VOS finished running all tests, and the VMware Driver can invoke

the next VOS. We propose the following solution (Figure 4).

We created a directory called Sync on the data drive Z. Before the VMware

Driver launches a VOS, it creates an empty file with a pre-defined name there. When the

Bootup Driver completes all scheduled tests, it renames that file to finished. Meanwhile,

the VMware Driver is running in a loop checking every 5 seconds whether the

synchronization file was renamed. During the idle time, the regular Operating System

passes control to the running VOS to do its job. When the VMware Driver spots that the

synchronization file has been renamed, it closes the current VOS, and starts another one

from the list.

How Do Bootup Driver and Test Scripts Get Their Data?

We specify a list of tests to perform for each VOS in a separate text file. This file

has a name given to the VOS in the VMware Workstation window (Figure 2). For

example, we have a Windows 2000 Professional.txt file for the VOS image named

Windows 2000 Professional. These files for all VOSes are stored and edited in a

dedicated directory on the data drive Z.

Before running a VOS, the VMware Driver reads its name from the list of VOSes

for configuration testing. Then it copies the VOS text file of the test scripts to run to a

predefined file current_batch.txt. Meanwhile, the Bootup Driver is programmed to

always look for this file to determine what set of tests to execute. This way, the Bootup

Driver is VOS-independent and completely reusable. When the tests on the VOS are

 6

completed, the VMware Driver deletes that file. Then it goes to the next VOS in the list

and creates a new batch file with the tests to run for that new coming VOS.

Each script has a data file associated with it. By convention, the script’s data file

has a name of the script. This allows the script to easily find its data file. All data files are

stored at a predefined location on the drive Z.

How to Organize Test Results?

 WinRunner can generate test results in two forms: either in ASCII format, or in

the WinRunner’s proprietary format that displays the results in nice colors and graphics.

Since the first option is a plain text, WinRunner allows you to specify the result directory

at any location. The big drawback of this approach is that you cannot compare any

graphics and it’s inconvenient to parse a large result file for specific information.

 The second and preferred option requires placing the result directory under the

directory of the script being executed. Since the control script running on each VOS is the

same reusable Bootup Driver, the test results for each VOS are generated under that

driver directory on the drive Q. For example, the test results for the VOS named Windows

2000 Professional will be generated under the following directory:

Q:\Bootup_Driver\Windows 2000 Professional\. These results can be easily analyzed

with the WinRunner’s Test Results utility.

 There is still one minor problem. Each time we run the same VOS, the previous

results will be overwritten with the new results. We solved this by attaching a time stamp

to the result directory name.

Conclusion

 The presented configuration test automation framework was implemented and

successfully used at Plaxo, Inc. It was part of a continuous integration process to validate

nightly builds. The Plaxo Contacts application was tested with various versions of MS

Outlook and MS Outlook Express on Windows 98/2000/NT/XP. The deployed test

 7

automation architecture allowed the Plaxo team to test over 30 different configurations on

one test machine.

Figure 1. VMware and Bootup Drivers running concurrently.

 8

Figure 2. List of VOSes under test.

 9

Vlad's Z Drive

Data

Vlad's PC

Test Automation Architecture

VMware
Driver

Bootup
Driver

VOS

Tony's PC

VMware
Driver

Bootup
Driver

VOS

Data

Scripts

Tony's Z Drive

Common Q Drive

Figure 3. Test Automation Architecture.

 10

Bootup
Driver

Sync

Vlad's Z Drive

VOS

VMware
Driver

Vlad's PC

Synchronization Diagram

Figure 4. Synchronization Diagram

