
32 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

The Last Word

the code is fully commented. Here are a few best practices.
Choose a clear coding style: Keep your function and data

naming consistent.
Optimize for the reader, not the writer: Saving time while

you write code can cause serious frustration and confusion for
anyone reading that code later.

Include concise comments: If it isn’t obvious what’s hap-
pening when you look at the code or you’ve implemented
something a little unusual, make sure you include good com-
ments to explain it. Don’t write your comments for yourself—
imagine someone else trying to understand your code cold.

Always do the smallest, simplest thing to add value: Al-
ways focus on the task at hand and write the best code you can

to achieve your current aim.
Don’t do anything unusual.
Writing code with one eye on
future requirements is a recipe
for disaster. Designing your
code in a modular fashion
with separate, discrete parts is
much easier to understand.

KISS (Keep It Simple,
Stupid): Don’t assume the
next person working on your
code is going to be at the same
level of understanding or ex-

perience. Write code that a novice can understand and leave
out the experimentation and excessive optimization out.

Ensure good logging of code execution: Effective debug-
ging requires good code logging. You need evidence of what
was going on when the code was written. Log actions, entry
points, exit points, and parameters, and make the code con-
figurable. When you log from the beginning, it will be easier
to pinpoint specific errors and the origins of those errors
down the line.

2. Write Code that is easy to modify and enhanCe
To write code that is truly maintainable, it must be easy to

add new functionality and features. Extensibility is vital. If a
single change is liable to break the code in ten different places,
then you’re in serious trouble. It is possible to make your code
easier to change down the line. Here’s how.

When a developer writes code, he imagines that he will be
the only one working on it in the future. But the reality is
that someone else will have to work on it. This may be due
to a number of reasons: New functionality may be required,
changes will be needed for existing features, and fixes for de-
fects will need attention. The latter is a certainty. All of this
work is often performed long after the original code was
written and by a developer who did not write it. The challenge
is to make changes without breaking the existing code. This
situation can be complicated by the fact that there may be little
technical documentation summarizing what the code actually
does, and any future work will typically have tight schedule
demands.

If we accept Robert L. Glass’s
assertion in his post “Frequently
Forgotten Fundamental Facts
about Software Engineering”
for the IEEE Computer Society
[1] that software maintenance
accounts for 40 to 80 percent
of total software development
costs, then we can understand
the importance of writing main-
tainable code from the start. Fo-
cusing on rushing the product
out the door and failing to make
code easily understandable for those who will work with it in
the future dramatically increases the cost down the line.

Starting over from scratch because you’re afraid that every-
thing will break if you make too many changes is hugely dis-
ruptive and costly. It’s a simple truth that the more maintain-
able your code is from the start, the longer its lifecycle will be.

The question is, how do you write maintainable code?
These three simple rules will keep you firmly on the right track.

1. Write Code that is easy to understand and deBug
If the next developer to work on your code can’t understand

what you’ve done or why you’ve done it a specific way, then
they’ll usually throw that code away and start over. It takes
longer to understand poorly written code than to write new
code from scratch. Write structured code with a clear format,
follow conventions, and, if it isn’t self-explanatory, make sure

“It’s a simple truth that the more

maintainable your code is from the

start, the longer its lifecycle will be.”

The Rules for Writing
Maintainable Code
There are three fundamental rules that every software developer should

take into account when creating code to support long-term maintainability.

by Kaushal Amin | kaushalamin@kms-technology.com

http://www.TechWell.com
mailto:kaushalamin@kms-technology.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 33

Click here to read more at StickyMinds.com.
n	 References

DRY (Don’t Repeat Yourself): Many developers have a
nasty habit of writing code for one purpose and then copying
and pasting elsewhere to do something else. If it gets used
in multiple places and there’s something wrong with it, then
you’ve just multiplied the defect. If you’re tempted to copy and
paste code, consider extracting the common functionality to be
available throughout your code base.

Separate concerns: You should modularize code based on
distinct features that overlap as little as possible in terms of
functionality. If the code needs to do fifteen things, then split
it up into fifteen modules that each do one thing. Don’t try to
do all fifteen things in one module because that will make it
tougher to make changes without breaking everything else.

Separate code and data: You should always externalize text
into separate files. For example, it takes additional effort to iso-
late menu options and error messages into an external file, but
if you put text in the code, it will be more difficult to change
it later. Make sure you use a consistent nickname in language
text file names. This approach enables text to be updated by
nondevelopers without letting them near the actual code.

Avoid long statements and deep nesting: Don’t write all
your code in one big function because it’s really tough to un-

derstand if it’s performing too many tasks. In my experience, a
single function that is more than a couple of printed pages long
is way too long and should be subdivided.

3. Write Code that is easy to test
Saving the best for last, a good suite of tests can serve as

documentation, indicating how the code is supposed to behave
while making sure that the code actually supports the expected
behavior. Even better, great tests can give you confidence that
your code still works after you've made your changes.

Automated unit testing should be implemented from day
one so that when you make changes, the automated testing
program will run and you can see what needs to be fixed imme-
diately. In agile, even though it takes more time at the outset to
write test programs and code concurrently, comprehensive tests
should save major time and resources in the long run. {end}

The Last Word

Better Software (ISSN: 1553-1929) is

published six times per year: January/

February, March/April, May/June, July/

August, September/October, and November/

December. Back issues may be purchased

for $15 per issue plus shipping (subject

to availability). Entire contents © 2014 by

Software Quality Engineering (340 Corporate

Way, Suite 300, Orange Park, FL 32073), unless

otherwise noted on specific articles. The

opinions expressed within the articles and

contents herein do not necessarily express

those of the publisher (Software Quality

Engineering). All rights reserved. No material

in this publication may be reproduced in

any form without permission. Reprints of

 individual articles available. Call 904.278.0524

for details.

Display Advertising
advertisingsales@sqe.com

All Other Inquiries
info@bettersoftware.com

Agile & Better Software Dev Conference West http://adc-bsc-west.techwell.com 10

ASTQB http://www.astqb.org/advanced 8

Capgemini http://www.capgemini.com/testing 25

Cognizant https://fastest.cognizant.com/webapps/home Back Cover

HP http://www.hp.com/go/alm 12

Ranorex http://www.ranorex.com/whyBSM 2

Software Tester Certification http://sqetraining.com/certification 1

SQA http://www.sqasolution.com 13

STARCANADA http://starcanada.techwell.com Inside Front Cover

STAREAST http://stareast.techwell.com 9

Virtusa http://bit.ly/1ePFwO3 21

index to advertisers

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-167
mailto:advertisingsales@sqe.com
mailto:info@bettersoftware.com
http://adc-bsc-west.techwell.com
http://www.astqb.org/advanced
http://www.capgemini.com/testing
https://fastest.cognizant.com/webapps/home
http://www.hp.com/go/alm
http://www.ranorex.com/whyBSM
http://sqetraining.com/certification
http://www.sqasolution.com
http://starcanada.techwell.com
http://stareast.techwell.com
http://bit.ly/1ePFwO3

