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Embedding Performance Engineering Into Continuous Integration & 
Continuous Delivery Pipeline

By – Anjeneya Dubey

Little	Context	about	McGraw-Hill	Education	and	Me

Anjeneya	Dubey
Director	of	Performance	Engineering
Anjeneya.dubey@mheducation.com

Software	engineering
Performance	Engineering
Capacity	Engineering
Infrastructure	Planning	and	implementation
AWS	Cloud	Architecture	&	Operations
Site	Reliability	Engineering
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Agenda

• Continuous	Integration	and	Continuous	Delivery	
• What	does	it	mean	to	include	performance	engineering	into	the	CI	CD	Pipeline
• Challenges
• What	did	we	do	to	include	performance	engineering	in	the	pipeline

• Process	changes
• Performance	test	types	
• Test	Environment	management
• Test	Data	management
• Tools	and	Technologies	we	use
• Pass/fail	Decision	Making

• Self	Service	Performance	Engineering
• Using	AI	in	production
• Do’s	and	Don’ts
• Summary
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• Automated	build	process	and	build	verification	tests	for	each	
environment	in	Continuous	integration
• Extend	Continuous	integration	by	rapidly	deploying	capabilities	to	
users	to	gain	competitive	advantage
• Reduce	test	cycle	time	&	time	to	market
• Highly	automated	testing	&	release/roll-back
• Quicker	automated	decision	making	&	feedback	loop	

Continuous	Integration/Continuous	Delivery
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Embedding	Performance	into	the	Pipeline
Your	pipeline	as	code
• Dev	->	Test->	Prod
• Dev	->	Test->	Performance	->	Prod

What	does	it	mean?
Adding	Performance	environment	into	the	pipeline	means	that	now	the	
performance	tests	are	blocking	your	code	promotion

Dev Test Production

Code	Promotion

Feedback

Performance
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Challenges	- Cultural	

• Performance	is	an	after	thought
• Is	not	part	of	the	agile	teams
• Is	not	part	of	the	quality	teams
• Do	not	get	included	in	the	agile	ceremonies
• Create	awareness	on	performance	tasks
• Empower	dev	to	test
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Challenges	- Technical	

• Automating	the	performance	testing	and	analysis
• Reducing	Time	to	prepare	and	execute	test
• Quickly	reacting	to	performance	metrics
• Automatic	Pass/Fail
• Scaling	the	load	test	tool	for	variety	of	tests
• Keep	the	testing	env/data	consistent	
• What	to	Shift	left	what	to	shift	right
• Cost	of	running	performance	test	on	every	build
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How	do	we	do	it	@MHE?
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Process	changes

• Make	non	functional/Performance	requirement	as	part	of	
the	functional	requirement
• API	contracts
• Include	performance	as	part	of	definition	of	done	for	sprints
• Clear	definition	of	performance	ready	product
• Discuss	Performance	results	as	part	of	the	sprint	demos	with	
all	stake	holders
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Performance	Requirements	Workflow

Stories	with	acceptance	criteria	that	
includes	clear	performance	
requirements
• API	X	must	handle	load	of	xx	
transactions	per	sec	with	95%ile	
response	time	as	100	ms
• All	Stories	must	be	evaluated	if	they	
require	performance	criteria
• Performance	tests	should	be	created	
to	validate	the	criteria	within	the	
sprints
• Poor	Performance	=	Functional	Bug
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Typical	PE	Process
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Test	Environment

• Use	production	like	performance	env
• Spin	up	only	when	you	run	test	to	save	cost
• Refresh	DBs	for	test	data	management
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• Can	expand	and	contract	- Autoscaling
• Infrastructure	as	code	– Terraform,Puppet
• Creating	&	destroying	envs at	ease
• Create	parallel	envs for	parallel	executions

Cloud	makes	it	easier
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Spin	up	parallel	envs for	parallel	executions

Perf	Env A

Perf	Env B

• Production	capacity	
instance

• Protocol	Level	full	load	
test

• UI	performance	test	
using	functional	test	
scripts	• Scaled	down	env

• Stress/capacity	test

Perf	Env C

• Testing	outside	the	
pipeline

• Troubleshooting
• Benchmarking/baselining	

tests
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Performance	Test	types	in	CI	CD

• User	Experience	- Browser	side	performance
• Load	tests
• Capacity/Stress	Tests

15

Single	user	performance
Good	UX	=	Customer	Happy
How	do	we	measure	that?
• Collect	single	user	browser	side	response	times	
• Leverage	functional	test	scripts(selenium)	
• Create	scenarios	that	you	want	to	measure	through	our	self	service	automation	
framework
• All	Methods	in	the	scripts	have	the	snippet	that	collects	the	response	times
• Executed	from	various	geo	locations
• Usable	time	vs	last	byte	
• Collecting	HAR	&	Creating	videos	of	the	tests	for	offline	analysis
• Upload	the	data	to	S3
• MHE	Performance	Platform	takes	over	from	there
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Load	tests

• Full	load	tests
• Scaled	Down	tests
• Stress	test	to	find	capacity
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Feature	Flags

What	to	do	when	you	find	performance	issues?
• Block	the	release
• Turn	Off	the	feature	that	creates	the	performance	issue
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Test	Data	management

• Make	our	tests	self	contained	
• Create	&	destroy	data	as	part	of	
the	test	as	much	as	possible

• For	the	ones	you	cant	create	
during	the	test	you	create	as	part	
of	the	environment	build	out
• Spin	up	parallel	Aurora	RDS	
with	pre	seeded	test	data	to	
speed	up	env build	out
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Tools	&	Technologies	we	use
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Performance	Engineering	Platform

• Singular	platform	to	manage	performance	lifecycle	for	all	of	our	
products
• Powers	CI	CD	for	Performance	engineering
• Central	repo	for	all	metrics
• Dynamic	thresholds
• Pass	fail	decision	making
• Powers	Self	Service	Performance	Engineering
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PE	Platform	Overview

Collector	Service
Aggregator	Service

Central	Repository

Reporting	&	Alerting	
Service

Developer
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PE	Platform	– Performance	test	types
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Trending	– Performance	graph	for	each	build

Build	3383	on	
2/28	is	failed	for	

an	API

Build	3362	on	2/26	is	
broken	for	an	API	as	
the	response	time	

degraded	almost	30%
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Containerize	JMeter

• We	use	JMeter	heavily	for	the	all	the	CI	CD	testing
• Distributed	load	testing	– we	need	1	master	&	N	number	of	slaves	to	
generate	huge	load
• Scaling	the	JMeter	for	thousands	of	users	was	a	challenge
• Dockerize JMeter	gives	the	scale	needed
• Speeds	up	the	provisioning
• Part	of	the	infra	as	code	– which	means	when	the	code	gets	deployed	
automatically	JMeter	farm	gets	provisioned	where	the	test	gets	
executed
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Automated	Pass/Fail

Based	on	3	basic	rules

• Simple	&	Easy
• Implementable
• Dependent	on	throughput,	response	times	and	system	KPIs
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Thresholds	for	pass/fail

• Static	Business	response	times	SLAs
• Dynamic	user	experience/API	level	Response	times	thresholds
• Dynamic	System	Resource	utilization	thresholds
• Based	on	historical	trend	for	each	API	and	alerts	if	it	deviated	from	
last	n	tests
• Allows	separate	threshold	for	each	API
• Doesn’t	allow	slippage	even	within	the	contract
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Self-Service	Performance	Engineering

• You	don’t	need	to	be	performance	engineer	to	run	
test
• Automate	the	entire	performance	cycle
• Script	Creation	through	a	UI
• Execute	test	as	part	of	CI	CD	or	Execute	it	on	
demand	through	voice	enabled	Alexa	or	a	
chatBot
• Analysis	through	APM	and	MHE	built	
Performance	Platform
• Automated	Notification	through	
Hipchat/Email/Pager	Duty
• Automated	Defect	creation	with	details	in	jira

Tester Devops

Developer

Performance	Engineer
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Self-Service	Performance	Engineering
Test	

Creation

CI	CD Alexa Chat
Bots

APM MHE	PE	
Platform

Hipchat Email Pagerduty
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Jira
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Notifications

• Automated	
defect	creation

• Summary	of	the	
test	result

• APM	dashboard	
links	with	drill	
down	

• Automated	real	
time	hipchat
notifications

• With	Jira	link	and	
details
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Shift	Right	- Anomaly	detection

• Twitter	Anomaly	Detection
• Twitter’s	Breakout	Detection
• Pearson	Correlation	Algorithm
• K-Means	Clustering
• New	Relic	Radar
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Do’s	&	Don’ts

• Start	with	simple
• Perfect	it	later
• Remove	false	positives	- Get	
it	right	from	the	beginning
• Know	your	applications	KPIs
• Run	parallel tests
• Run	continuous	tests

• Don’t	run	benchmark	&	
endurance	test	in	CI
• Dont remove	the	failing	tests	to	
pass	through	CD
• Don’t	keep	increasing	the	
thresholds	to	pass	tests
• Don’t	reinvent	your	PE	
framework	rather	see	how	you	
can	leverage	your	existing	tools	
and	framework	in	CI	CD
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Summary

• Include	performance	engineering	in	your	CI	CD	pipeline
• Automate	automate	&	automate
• Make	your	tests	repeatable	
• Collect	metrics	along	the	way
• Avoid	false	positives
• Keep	analysis	&	decision	making	simple
• Empower	devs to	test
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Questions?
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