
	
	

T16
Performance Testing
Thursday, May 3rd, 2018
1:30 PM

Embedding Performance Engineering
into the CI/CD Pipeline

Presented by:

Anjeneya Dubey

McGraw-Hill Education

Brought to you by:

350 Corporate Way, Suite 400, Orange Park, FL 32073
888-- -268- - -8770 ·· 904- --278-- -0524 - info@techwell.com - http://www.stareast.techwell.com/

	
	

Anjeneya Dubey
McGraw-Hill Education

Anjeneya Dubey is the director of performance engineering for McGraw-Hill
Education, a learning science company that delivers personalized learning
experiences. His responsibilities include ensuring that every product built is high
performing, highly scalable, highly available, highly reliable, and fault tolerant. In
his past five years with McGraw-Hill, Anjeneya has built automated performance
engineering frameworks that detect performance and scalability issues early on
in a fast-paced agile environment. Previously he was a technology consultant,
focused on providing enterprise quality and performance engineering solutions.
Anjeneya has worked with large institutions to set-up enterprise performance
and quality engineering solutions.

	

3/13/18

1

Embedding Performance Engineering Into Continuous Integration &
Continuous Delivery Pipeline

By – Anjeneya Dubey

Little	Context	about	McGraw-Hill	Education	and	Me

Anjeneya	Dubey
Director	of	Performance	Engineering
Anjeneya.dubey@mheducation.com

Software	engineering
Performance	Engineering
Capacity	Engineering
Infrastructure	Planning	and	implementation
AWS	Cloud	Architecture	&	Operations
Site	Reliability	Engineering

2

3/13/18

2

Agenda

• Continuous	Integration	and	Continuous	Delivery	
• What	does	it	mean	to	include	performance	engineering	into	the	CI	CD	Pipeline
• Challenges
• What	did	we	do	to	include	performance	engineering	in	the	pipeline

• Process	changes
• Performance	test	types	
• Test	Environment	management
• Test	Data	management
• Tools	and	Technologies	we	use
• Pass/fail	Decision	Making

• Self	Service	Performance	Engineering
• Using	AI	in	production
• Do’s	and	Don’ts
• Summary

3

• Automated	build	process	and	build	verification	tests	for	each	
environment	in	Continuous	integration
• Extend	Continuous	integration	by	rapidly	deploying	capabilities	to	
users	to	gain	competitive	advantage
• Reduce	test	cycle	time	&	time	to	market
• Highly	automated	testing	&	release/roll-back
• Quicker	automated	decision	making	&	feedback	loop	

Continuous	Integration/Continuous	Delivery

4

3/13/18

3

Embedding	Performance	into	the	Pipeline
Your	pipeline	as	code
• Dev	->	Test->	Prod
• Dev	->	Test->	Performance	->	Prod

What	does	it	mean?
Adding	Performance	environment	into	the	pipeline	means	that	now	the	
performance	tests	are	blocking	your	code	promotion

Dev Test Production

Code	Promotion

Feedback

Performance

5

Challenges	- Cultural	

• Performance	is	an	after	thought
• Is	not	part	of	the	agile	teams
• Is	not	part	of	the	quality	teams
• Do	not	get	included	in	the	agile	ceremonies
• Create	awareness	on	performance	tasks
• Empower	dev	to	test

6

3/13/18

4

Challenges	- Technical	

• Automating	the	performance	testing	and	analysis
• Reducing	Time	to	prepare	and	execute	test
• Quickly	reacting	to	performance	metrics
• Automatic	Pass/Fail
• Scaling	the	load	test	tool	for	variety	of	tests
• Keep	the	testing	env/data	consistent	
• What	to	Shift	left	what	to	shift	right
• Cost	of	running	performance	test	on	every	build

7

How	do	we	do	it	@MHE?

8

3/13/18

5

Process	changes

• Make	non	functional/Performance	requirement	as	part	of	
the	functional	requirement
• API	contracts
• Include	performance	as	part	of	definition	of	done	for	sprints
• Clear	definition	of	performance	ready	product
• Discuss	Performance	results	as	part	of	the	sprint	demos	with	
all	stake	holders

9

Performance	Requirements	Workflow

Stories	with	acceptance	criteria	that	
includes	clear	performance	
requirements
• API	X	must	handle	load	of	xx	
transactions	per	sec	with	95%ile	
response	time	as	100	ms
• All	Stories	must	be	evaluated	if	they	
require	performance	criteria
• Performance	tests	should	be	created	
to	validate	the	criteria	within	the	
sprints
• Poor	Performance	=	Functional	Bug

10

3/13/18

6

Typical	PE	Process

11

Test	Environment

• Use	production	like	performance	env
• Spin	up	only	when	you	run	test	to	save	cost
• Refresh	DBs	for	test	data	management

12

3/13/18

7

• Can	expand	and	contract	- Autoscaling
• Infrastructure	as	code	– Terraform,Puppet
• Creating	&	destroying	envs at	ease
• Create	parallel	envs for	parallel	executions

Cloud	makes	it	easier

13

Spin	up	parallel	envs for	parallel	executions

Perf	Env A

Perf	Env B

• Production	capacity	
instance

• Protocol	Level	full	load	
test

• UI	performance	test	
using	functional	test	
scripts	• Scaled	down	env

• Stress/capacity	test

Perf	Env C

• Testing	outside	the	
pipeline

• Troubleshooting
• Benchmarking/baselining	

tests

14

3/13/18

8

Performance	Test	types	in	CI	CD

• User	Experience	- Browser	side	performance
• Load	tests
• Capacity/Stress	Tests

15

Single	user	performance
Good	UX	=	Customer	Happy
How	do	we	measure	that?
• Collect	single	user	browser	side	response	times	
• Leverage	functional	test	scripts(selenium)	
• Create	scenarios	that	you	want	to	measure	through	our	self	service	automation	
framework
• All	Methods	in	the	scripts	have	the	snippet	that	collects	the	response	times
• Executed	from	various	geo	locations
• Usable	time	vs	last	byte	
• Collecting	HAR	&	Creating	videos	of	the	tests	for	offline	analysis
• Upload	the	data	to	S3
• MHE	Performance	Platform	takes	over	from	there

16

3/13/18

9

Load	tests

• Full	load	tests
• Scaled	Down	tests
• Stress	test	to	find	capacity

17

Feature	Flags

What	to	do	when	you	find	performance	issues?
• Block	the	release
• Turn	Off	the	feature	that	creates	the	performance	issue

18

3/13/18

10

Test	Data	management

• Make	our	tests	self	contained	
• Create	&	destroy	data	as	part	of	
the	test	as	much	as	possible

• For	the	ones	you	cant	create	
during	the	test	you	create	as	part	
of	the	environment	build	out
• Spin	up	parallel	Aurora	RDS	
with	pre	seeded	test	data	to	
speed	up	env build	out

19

Tools	&	Technologies	we	use

20

3/13/18

11

Performance	Engineering	Platform

• Singular	platform	to	manage	performance	lifecycle	for	all	of	our	
products
• Powers	CI	CD	for	Performance	engineering
• Central	repo	for	all	metrics
• Dynamic	thresholds
• Pass	fail	decision	making
• Powers	Self	Service	Performance	Engineering

21

PE	Platform	Overview

Collector	Service
Aggregator	Service

Central	Repository

Reporting	&	Alerting	
Service

Developer

22

3/13/18

12

PE	Platform	– Performance	test	types

23

Trending	– Performance	graph	for	each	build

Build	3383	on	
2/28	is	failed	for	

an	API

Build	3362	on	2/26	is	
broken	for	an	API	as	
the	response	time	

degraded	almost	30%

24

3/13/18

13

Containerize	JMeter

• We	use	JMeter	heavily	for	the	all	the	CI	CD	testing
• Distributed	load	testing	– we	need	1	master	&	N	number	of	slaves	to	
generate	huge	load
• Scaling	the	JMeter	for	thousands	of	users	was	a	challenge
• Dockerize JMeter	gives	the	scale	needed
• Speeds	up	the	provisioning
• Part	of	the	infra	as	code	– which	means	when	the	code	gets	deployed	
automatically	JMeter	farm	gets	provisioned	where	the	test	gets	
executed

25

Automated	Pass/Fail

Based	on	3	basic	rules

• Simple	&	Easy
• Implementable
• Dependent	on	throughput,	response	times	and	system	KPIs

26

3/13/18

14

Thresholds	for	pass/fail

• Static	Business	response	times	SLAs
• Dynamic	user	experience/API	level	Response	times	thresholds
• Dynamic	System	Resource	utilization	thresholds
• Based	on	historical	trend	for	each	API	and	alerts	if	it	deviated	from	
last	n	tests
• Allows	separate	threshold	for	each	API
• Doesn’t	allow	slippage	even	within	the	contract

27

Self-Service	Performance	Engineering

• You	don’t	need	to	be	performance	engineer	to	run	
test
• Automate	the	entire	performance	cycle
• Script	Creation	through	a	UI
• Execute	test	as	part	of	CI	CD	or	Execute	it	on	
demand	through	voice	enabled	Alexa	or	a	
chatBot
• Analysis	through	APM	and	MHE	built	
Performance	Platform
• Automated	Notification	through	
Hipchat/Email/Pager	Duty
• Automated	Defect	creation	with	details	in	jira

Tester Devops

Developer

Performance	Engineer

28

3/13/18

15

Self-Service	Performance	Engineering
Test	

Creation

CI	CD Alexa Chat
Bots

APM MHE	PE	
Platform

Hipchat Email Pagerduty

Ex
ec
ut
io
n

An
al
ys
is

N
ot
ifi
ca
tio

n
De

fe
ct

Jira
29

Notifications

• Automated	
defect	creation

• Summary	of	the	
test	result

• APM	dashboard	
links	with	drill	
down	

• Automated	real	
time	hipchat
notifications

• With	Jira	link	and	
details

30

3/13/18

16

Shift	Right	- Anomaly	detection

• Twitter	Anomaly	Detection
• Twitter’s	Breakout	Detection
• Pearson	Correlation	Algorithm
• K-Means	Clustering
• New	Relic	Radar

31

Do’s	&	Don’ts

• Start	with	simple
• Perfect	it	later
• Remove	false	positives	- Get	
it	right	from	the	beginning
• Know	your	applications	KPIs
• Run	parallel tests
• Run	continuous	tests

• Don’t	run	benchmark	&	
endurance	test	in	CI
• Dont remove	the	failing	tests	to	
pass	through	CD
• Don’t	keep	increasing	the	
thresholds	to	pass	tests
• Don’t	reinvent	your	PE	
framework	rather	see	how	you	
can	leverage	your	existing	tools	
and	framework	in	CI	CD

32

3/13/18

17

Summary

• Include	performance	engineering	in	your	CI	CD	pipeline
• Automate	automate	&	automate
• Make	your	tests	repeatable	
• Collect	metrics	along	the	way
• Avoid	false	positives
• Keep	analysis	&	decision	making	simple
• Empower	devs to	test

33

Questions?

34

