
10/11/18	

1	

Help! I am Drowning in 2 Week Sprints
Please Tell me What NOT to Test!

About me

President of Mary Thorn Consulting, LLC

Chief storyteller of the book The Three Pillars of Agile Testing and
Quality, Mary Thorn is owner of Mary Thorn Consulting in Raleigh,
NC. During her more than twenty years of experience with
healthcare, financial, and HR SaaS-based products, Mary has held
director, manager- and contributor-level positions in software
development organizations.

 A seasoned leader and coach in agile and testing methodologies,
Mary has direct experience building and leading teams through
large scale agile transformations.

Mary’s special expertise is a combination of agile, testing,
DevOps, and agile scaling skills that her clients find incredibly
valuable.

 She is also a frequent speaker, teacher and author. You can
connect with Mary via LinkedIn here:
https://www.linkedin.com/in/marythorn/

2

10/11/18	

2	

3

1.  Introduction
2.  3 Amigos
3.  Risked Based Testing
4.  Test Ideas
5.  Test Case Gaps
6.  Pareto
7.  All Pairs
8.  Wrap Up!

Agenda

3 Amigos

4

10/11/18	

3	

3-Amigos

● Coined by George Dinwiddie
‒  http://rgalen.com/agile-training-news/2014/4/13/3-amigos-in-agile-teams

● Swarming around the User Story by:
‒  Developer(s)

‒  Tester(s)

‒  Product Owner

● Conversation device – reminder for collaboration amongst relevant team
members

5

Risked Based Testing

6

Are you enabling the bad behavior ……Are you a HERO?????

10/11/18	

4	

7

Risk–Based Testing Background

●  It starts with the realization that you can’t test everything – ever!
100% coverage being a long held myth in software development

●  There are essentially 5 steps in most of the models
1.  Decompose the application under test into areas of focus
2.  Analyze the risk associated with individual areas – technical, quality, business, schedule
3.  Assign a risk level to each component
4.  Plan test execution, based on your SDLC, to maximize risk coverage
5.  Reassess risk at the end of each testing cycle

8

Risk–Based Testing Background

●  Risk–Based Testing is effectively a risk mitigation technique
‒  Not a prevention technique

●  It’s about trade-offs
‒  Human and physical resources

‒  Ratio’s between Producers (Developers) and Consumers (Testers)

‒  Time

‒  Rework (retesting & verification)

‒  Quality – Coverage vs. Delivery

‒  Visibility into the trade-offs

10/11/18	

5	

9

● What are they?

‒ Risked based test planning technique

‒ Created by Rob Sabourin

‒ Replaces traditional waterfall test plan in Agile.

Test Ideas

Test Ideas

10

10/11/18	

6	

Test Ideas - Sources

11

● Capabilities
● Failure Modes
● Quality Factors
● Usage Scenarios
● Creative Ideas
● States
● Data
● Environments
● White Box
● Taxonomies

Test Ideas

12

● How to find them?
‒  Does system do what it is suppose to do?

‒  Does the system do things it is not supposed to?

‒  How can the system break?

‒  How does the system react to it’s environment?

‒  What characteristics must the system have?

‒  Why have similar systems failed?

‒  How have previous projects failed?

10/11/18	

7	

Test Ideas - Process

13

●  Life of a test idea
‒  Comes into existence

‒  Clarified

‒  Prioritized
•  Test Now (before further testing)

•  Test before shipping

•  Nice to have

•  May be of interest in some future release

•  Not of interest in current form

•  Will never be of interest

‒  Integrate into a testing objective

Test Ideas – 3 Amigos

● Test Triage Meeting

‒ Review Context

•  Business – with PO

•  Technical – With Developer

‒ Add or remove tests

‒ Agree to where the cut line is

14

10/11/18	

8	

Test Case Gap Analysis

15

Test Case Gap Analysis

10/11/18	

9	

Pareto Principle

17

18

Italian economist Vilfredo Pareto observed that -

For many phenomena, 80% of the consequences stem from 20% of the causes

When analyzing personal wealth distribution in Italy.

●  Also known as the 80-20 rule, the law of the vital few, and the principle of factor sparsity

●  Joseph Duran brought the principle forward as a potential quality management technique

●  In probability theory referenced as a Pareto distribution

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

Pareto Principle

10/11/18	

10	

19

Pareto Principle “Thinking” Examples

●  In a Toyota Prius warehouse –
‒  20% of the component boxes take up 80% of the space

‒  20% of the components make up 80% of the overall vehicle cost

●  In software applications –
‒  20% of the application code produces 80% of the defects

‒  20% of the developers produce 80% of the defects

‒  20% of the test cases (ideas) find 80% of the defects

‒  20% of the test cases (ideas) take 80% of your time to design & test

‒  20% of the product will be used by 80% of the customers

‒  20% of the requirements will meet 80% of the need

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

20

Pareto Principle “Thinking” Examples

● Leads to the notion of defect clustering. Many have observed that
software bugs will cluster in specific modules, classes, components,
etc.

● Think in terms of stable or well made components versus error-prone,
unstable, and fragile components. Which ones should receive most of
your attention? Do the areas remain constant?

● Often, complexity plays a large part in the clustering. Either solution
(true) complexity OR gold-plating (favored) complexity.

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

10/11/18	

11	

21

Open Defects per Functional Area Trending – Pareto (80:20 Rule) Chart

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

22

Open Defects per Functional Area “Rolling” Pareto Chart

Open Defects per Functional Area

0

5

10

15

20

25

30

Jan 1-15 Jan 16-31 Feb 1-14 Feb 15-28 Mar 1-15 Mar 16-30

Project weeks

o
f D

efe
cts

Install & Config Internal files Dbase Reporting
R-time analysis Off-line analysis GUI Help & docs

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

10/11/18	

12	

23

Pareto Principal Step 1 – Application Partitioning

● The first major challenge to Pareto-Based risk analysis is meaningfully
partitioning your application. Here are some guidelines –
‒  Along architectural boundaries – horizontally and/or vertically
‒  Along design boundaries
‒  At interface points – (API, SOA points, 3’rd party product integrations, external data

acquisition points)

● Always do this in conjunction with the development team
● The partitioned areas need to be balanced – in approximate size &

complexity
● Shoot for 5-12 meaningful areas for tracking

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

24

Pareto Principal Step 2 – Defect Tracking Setup

● Modify your DTS to support specific application component areas

● During triage, effectively identify and assign defect repairs and
enhancements to component areas

‒  Early on, testers will need development help to clearly identify root component areas
(about 20% of the time)

● If you have historical defect data (w/o partitioning), you can run an
application analysis workshop to partition data (post release) for future
predictions

It does require discipline and a little extra effort…

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

10/11/18	

13	

25

Pareto Principal Application Analysis Workshop

● Sometimes you don’t have the time to start Pareto tracking before
starting a project, so reflectively analyze Pareto for future planning
–

‒  Decompose your application or a sub-component of it if pressed for time
‒  Gather defects surfaced
‒  Gather your team (developers, testers)
‒  Discuss locale for each bug and create distribution
‒  Off-line create your curves and publish insights for the “next” release
‒  Can also help fine-tune decomposition areas and train the test team in defect

localization

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

26

Pareto Principal Step 3 – Observations & Adjustments

● Project trending at a component level
‒  Look for migration of risk and make adjustments
‒  Look for stabilization or regressions (risk)
‒  Identify high risk & low risk component areas at a project level
‒  Map component rates to overall project goals
‒  Trend open & high priority defects at a component level
‒  Track or predict project “done”ness at a component level

● Weekly samples of 20% component focus areas – looking for risk
migration
‒  Sample weekly, then adjust focus across your testing cycles or iterations

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

10/11/18	

14	

27

Pareto Principal Tools

● Excel can be used to display Pareto like charts, with the cumulative

percent trend needing to be simulated

● There are other packages available that will properly calculate &

display Pareto Charts for you. Keeping in mind that it’s a Six Sigma

tool, many are associated with supporting it.

Sample Pareto Chart

30

25

15

10 10

530

55
70

80
90

100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fec

ts

0

20

40

60

80

100

120

Bugs
Cum %

All Pairs

28

10/11/18	

15	

29

● All-Pairs testing is a method of handling large scale
combinatorial testing problems
‒  Also referred to as Pairwise, Orthogonal Arrays, and

Combinatorial Method
‒  it identifies all pairs of variables that need to be tested in

tandem – to achieve reasonably high coverage.

● Three primary references include –
‒  Lee Copeland – A Practitioners Guide to Software Test

Design
‒  James Bach – Open Source, AllPairs implementation
‒  Bernie Berger – Efficient Testing with All-Pairs 2003

StarEast paper

All-Pairs Testing

30

All-Pairs Testing Interoperability Testing

●  One sweet spot area for All-Pairs testing is interoperability. Something that faces web application testers every
day.

●  In this example, we want to examine browser compatibility across this specific set of system software levels –
focusing on the browser

●  Considering all combinations, there are (4 x 7 x 4 x 2) or 224 possible test cases for the example.

Client OS Browser App Server Server OS
Win NT IE 7 WebSphere Win NT

Win Vista IE 8 WebLogic Linux

Linux Safari 2 Apache

MAC Chrome IIS

FireFox 3.0

FireFox 3.5

Opera 9

10/11/18	

16	

31

All-Pairs Testing Example

● In All-Pairs test design we are concerned with
‒  Variables of a system

‒  Possible values that variables could take

● Then we generate a list of test cases that represent the pairing of

variables (all pairs) as the most interesting set of test cases to

approach in your test design

32

Hexawise Testing Example

●  Using pair-wise on the previous example, we
would identify 28 test cases as an alternative to

the 224 for absolute coverage.

●  We’d then use this output as guidance when
designing our test cases.

Note the ‘*’ indicates a don’t care for this variable

OS Server OS Browser Web servers
Windows xp Windows XP IE7 Apache
Windows vista Linux IE7 Websphere
Linux Windows XP IE7 IIS
MAC Linux IE7 Weblogic
Windows xp Windows XP IE8 Websphere
Windows vista Linux IE8 Apache
Linux Windows XP IE8 Weblogic
MAC Linux IE8 IIS
Windows xp Linux Firefox 3.0 IIS
Windows vista Windows XP Firefox 3.0 Weblogic
Linux Linux Firefox 3.0 Apache
MAC Windows XP Firefox 3.0 Websphere
Windows xp Windows XP Firefox 3.5 Weblogic
Windows vista Linux Firefox 3.5 IIS
Linux * Firefox 3.5 Websphere
MAC * Firefox 3.5 Apache
Windows xp Windows XP Safari Apache
Windows vista Linux Safari Websphere
Linux * Safari IIS
MAC * Safari Weblogic
Windows xp Windows XP Chrome Apache
Windows vista Linux Chrome Websphere
Linux * Chrome IIS
MAC * Chrome Weblogic
Windows xp Windows XP Opera Apache
Windows vista Linux Opera Websphere
Linux * Opera IIS
MAC * Opera Weblogic

10/11/18	

17	

33

All-Pairs Testing Intent

● Defects
‒  The hope of All-Pairs testing is that by running from 1-20% of your test cases you’ll find 70% - 85% of your

overall defects

● Coverage
‒  By way of example (Cohen) a set of 300 randomly selected test cases provided 67% statement coverage and

58% decision coverage for an application. While 200 All-Pairs derived test cases provided 92% statement
and 85% decision coverage.

●  Important tests can be missed. Use sound judgment when creating tests and add as
required

34

All-Pairs Testing Intent

● All-Pairs is simply a tool in your test design arsenal. Don’t use it alone or blindly!

● You won’t find all of your bugs exclusively using this tool!

● Often the strategy is to use All-Pairs to establish your baseline set of test cases
‒  Then analyze other business critical combinations and add risk-based tests as appropriate

10/11/18	

18	

35

All-Pairs Testing Brainstorming Value Proposition

● What are some testing

area opportunities for

All-Pairs?

● What are not?

● UI type input / output variation testing (functional)

● Cross-platform (interoperability) testing

●  Anything with high numbers of variables

●  Scenario based testing, with path (variable) variation

●  Performance testing, and most other non-functional testing

●  Exploration

● Using it solely to derive your test cases

36

All-Pairs Testing Fails when…

A few cautions from James Bach & Patrick J. Schroeder in paper –

Pairwise Testing: A Best Practice That Isn’t

●  You don’t select the right values to test with

● When you don’t have a good enough oracle

● When highly probable combinations get too little attention

● When you don’t know how the variables interact

10/11/18	

19	

All-Pairs Tools

● Let’s take a look at www.hexawise.com

‒  We’ll be “driving”, but we expect you to login in later and try things out…

● Review:
‒  Implementation of our earlier platform table

‒  Implementation of Bernie Berger’s example

37

● There are a lot of old and new testing techniques that

can used to enhance your agile testing journey.

● Here we discussed just a few…

● Read blogs, go to conferences, read our bookJ

38

Wrapping up!

