
Transform your
CI/CD Pipeline
Common pitfalls and how to avoid them

SPRING 2021

Transform your CI/CD Pipeline
Common pitfalls and how to avoid them

Contents

3

12

13

14

17

18

21

4

5

6

7

7

Introduction

A framework to facilitate DevOps

Part One

What is CI/CD’s role within DevOps?

How does CI/CD work?

The key stages of a CI/CD pipeline

Continuous delivery or continuous deployment?

What benefits can CI/CD bring?

Part Two

People

People pitfalls and how to avoid them

Part Three

Technology

Tools fit for four key phases

Technology pitfalls and how to avoid them

Part Four

Processes

Process pitfalls and how to avoid them

Conclusion

Automate, automate, and automate some more

9

10

2

To survive, let alone thrive, organisations are having to reorganise

their IT approach, finding new ways to deliver value to the business

and, ultimately, their customers. DevOps does just that – it merges

siloed development staff and their processes with operational teams,

enabling them to work together with a unified focus. Their objectives

are aligned; their modus operandi is fast development, fast

deployment, and fast iterations and upgrades.

DevOps represents a management concept – the overarching

thinking that drives culture, technology, and processes to work in this

way. The technical implementation framework it relies on is continuous

integration/continuous delivery (CI/CD). The main goal of CI/CD is

clear: customer satisfaction. And the way this is achieved can be

summed up simply: by delivering products and value faster.

In this ebook, we’ll take a closer look at CI/CD and its significant

role within DevOps. We’ll explore best practice in relation to people,

technology, and processes; highlight the changes you might need

to implement and the reasons behind them; and take a look at

some of the common pitfalls you’ll want to avoid as part of your

own transformation.

Introduction

A framework to facilitate
DevOps

3

As technology has advanced, so too have the processes software

companies use to get their products out to customers. Agile principles

and practices were born out of a growing demand for rapidity. They

reduce the amount of time required to develop new functionality,

encouraging dev teams to release early and often to deliver more

value more quickly to the customer. But prior to the introduction of

cloud-based operations and DevOps principles, deploying to production

could still take weeks or months. These have sped up this process

exponentially, reducing that time to a matter of hours or minutes.

CI/CD is at the heart of that fast-paced sea change.

DevOps incorporates how teams utilise people, processes, and

technologies to deliver value to customers, but it isn’t just about

getting deliverables released. For DevOps to be successful, teams

need to ensure they’re delivering value quickly, securely, and repeatedly.

CI/CD helps teams to focus on making rapid improvements to the

customer experience. It builds automation, governance, longevity,

and security into software development. It speeds up the life cycle

by combining build, configure, test, and deployment functions into

product-oriented teams.

Part One

What is CI/CD’s role
within DevOps?

4

https://www.adaptavist.com/solutions/transformation-consulting/devops

CI/CD thinking and practices are supported by tools that enable

automation and regular and rigorous testing at each stage of the

software pipeline. This reduces the time required to integrate changes

before moving code into production. It depends on closed feedback

loops to identify and fix problems fast. This notion of making ongoing

improvements – small changes more frequently – makes testing more

manageable and integration less problematic.

In a CI/CD pipeline, all developers merge their code changes in a

central repository on a regular basis – in top-performing organisations,

multiple times a day is not uncommon. Each code change initiates

automated build-and-test sequences, providing feedback to the

developers so they can fix any issues. Deployment might be manual

with multiple stages built in, but automation is central to this part of the

pipeline too. Without automation, engineers would need to perform

these same steps manually, which takes a lot longer and is potentially

more unreliable.

How does CI/CD work?

5

Source: a change in code in the repository (or automatic scheduling)

triggers a notification to run automations in the pipeline.

Build: the source code is combined to build an artifact, a usable

instance of the product, flagging any potential problems.

Test: automated tests are run to validate the code and how the

product behaves. These tests might be run in multiple stages, and

provide feedback to the developers.

Deploy: when code has passed the tests, it’s ready to be deployed into

a new environment, either manually into a staging environment first or

automatically into a production environment for the customers.

Monitor: once the artifact is deployed into production, the application

is continuously monitored to analyse trends, examine the performance,

and proactively identify problem areas.

6

The key stages of a CI/CD pipeline

Any failures will trigger notifications to let the relevant developer know

the cause, and when code is successfully deployed to production, the

whole team is made aware too.

7

The CD in CI/CD is sometimes mistakenly referred to as continuous

deployment. Just to clarify, continuous delivery refers to the discipline

of building software in a way that means it can be deployed to

production at any time. Continuous deployment, on the other hand,

refers to every change being automatically put into production, so

multiple deployments every day. In order to achieve continuous

deployment, you must be doing continuous delivery.

Poor or non-existent CI/CD means engineers spend all their time on

maintenance rather than revenue-generating projects, code is wasted

waiting for someone to test it, money is lost through poor productivity

and reliability, and developer retention will suffer. But get your CI/CD

strategy right and you stand to benefit significantly.

Create code that makes you money – rather than sitting in a queue

waiting for manual testing, your code gets tested automatically and

deployed to production. That means you can start making money

from it right away.

Increased code quality – because your people are focused on

what they do best, you can pretty much bid farewell to bad code.

Developers can spend more time creating good code rather than

worrying about production, and ops can stop having to feel like

it’s holding up the process.

What benefits can CI/CD bring?

Continuous delivery or continuous deployment?

8

More innovative, more competitive – getting features to market fast

helps you stand out from the competition and set the agenda for your

sector, driving innovation internally.

Hire the best and keep them too – engineers want to focus on their

speciality, and with CI/CD they can experience greater productivity,

autonomy, and work on more enjoyable tasks. Word will get around,

and you’ll soon be attracting the best talent.

These benefits can be transformational, but they won’t come

immediately. Successful implementation takes consideration,

organisation, and time. The first step is understanding best practice

when it comes to people, technology, and processes, arming yourself

with the knowledge you need to avoid common pitfalls. Next, we’ll take

a look at how you can improve your CI/CD service across these three

key areas.

As your organisation’s primary resource, people have a big role to play

in the success of your CI/CD strategy. Having the right people in place

is imperative if you’re going to make the shift away from a more

traditional software development model to a DevOps approach.

Long gone are the days of spending months or even years planning,

developing, testing, and finally deploying new products, features, or

upgrades. As the new mindset on the block, DevOps requires

developers to focus on making ongoing improvements in smaller

increments and responding to customer demands.

While CI/CD heavily impacts the way IT works, it has wider cultural

implications on the business at large. It depends on a completely

different approach to how and when value is delivered to the customer.

Teams practising CI/CD will detect errors earlier in the development

process, reduce integration problems, and develop faster and with

more confidence. As a result, they’ll feel more productive and happier

at work. This uptick will ensure you retain the best people and attract

new bright sparks to the business.

The most obvious and important change that you’ll need to make is

ensuring collaboration and communication among teams takes

precedence and that the right technology and practices are in place to

facilitate this. For CI/CD to be successful, people from different parts

of the business will need to be comfortable teaming up and sharing

knowledge. It’s all about working towards a common goal and

achieving more together.

Part Two

People

9

10

Prioritising technical expertise over soft skills

People skills are very important in a DevOps team. Developers aren’t

confined to working in silos on individual projects – they’re part of a

wider group of individuals that need to communicate clearly for speedy

CI/CD to take place. They should also have a customer-first mindset to

help empathise with the end user’s needs and deliver accordingly.

Managers tasked with putting together a DevOps team should include

a mix of process, functional, technical, and soft skills to find the

right balance.

Assuming agile will come naturally

Terms like DevOps and agile can get bandied around, but if your team

have been in place for a while, a lot of what you’re introducing might be

alien to them. It’s important to make sure teams include a certain level

of CI/CD and agile development experience to help set your strategy in

motion. That means an appreciation for software application

architecture too, not just coding knowledge, which will help them know

what’s worth automating and how.

Relying on rigid, static ways of working

DevOps demands that people are under pressure to juggle a number of

projects at the same time, so multitaskers are a must. And because

requirements can change pretty quickly, a more fluid mindset is

essential. Shunning rigidity and embracing flexibility will mean teams

are more prepared to put out fires when problems do arise.

People pitfalls and how to avoid them

11

Scrimping on security knowledge

Because CI/CD lets you develop and deliver new features faster, it

opens your software up to the risk of vulnerabilities. Rather than seeing

safety as an afterthought, embrace a shift-left approach, fixing security

issues early and often with quality testing. This includes incorporating

role-based access control and leveraging secrets management to

ensure sensitive information is properly protected. Your teams will

need a solid understanding of best practice for building secure

software to keep data safe and minimise the threat of cyber attacks.

Overlooking automation and analysis

There has been a proliferation of DevOps technology in recent years, so

good team knowledge of the right automation and testing tools is key,

with a focus on technical cloud skills and data set analysis. Lots of

these tools are open source and more are being introduced all the time.

To scale and grow your own DevOps environment, encourage your

people to stay on top of the latest innovations.

The most important thing to remember when assessing your CI/CD

tooling needs is that it’s not a case of one size fits all. Where you’re at

now and where you want to be will be different for every organisation,

so the first step is to understand your current application mix.

Are you still dependent on monolithic applications or is your

environment based on a microservices architecture with a container-

based pipeline? The latter is where most organisations are heading,

enjoying the benefits of decoupled software elements, reusable

components, and independent development cycles. Chances are, you’re

not there yet or you’re somewhere in between, and this will play into

your tooling choices, enabling you to measure the impact technology

has on your environment.

Another key consideration is what you can afford. While many tools are

open source – giving you access to a thriving community to solve

problems – you’ll need to factor in support costs and hosting services.

Paid software can bring its own advantages, such as expertise for your

configuration at your fingertips. You should consider which tools will

help you produce better quality code, reduce vulnerabilities, and

increase operational efficiency.

Part Three

Technology

12

13

There are some key phases to any CI/CD pipeline, namely source, build,

test, and deploy, and you’ll need tools to support each. While we’re not

recommending any specific tools in this ebook, here are a few factors

to consider for each phase:

Source – pipelines are typically triggered by a source code repository. A

version control system that tracks these changes, notifies the CI/CD

tool, and runs the relevant pipeline is a huge benefit. It will let you

manage multiple programmers working across the project and helps to

speed things up.

Build – this is when the source code and its dependencies are

combined to build a runnable instance. Here container software can be

used in cloud-native environments. When done right, it allows you to

speed up building, testing, and deploying software, features, and

functionality. And it lets you do all this more easily and frequently

without disrupting the user experience.

Test – automated tests validate the code and bring any issues to light.

Larger projects require lots of testing of different types at several

stages. Tools that can automatically build, document, integrate, test,

facilitate required changes, and prepare an application for deployment

help keep this phase on track.

Deploy – DevOps teams will largely deploy work-in-progress to a

staging environment for additional testing and review. You’ll want tools

that can automatically deploy from the main or ‘release’ branch to the

production environment for your end users.

Tools fit for four key phases

14

Not considering customisation needs

How much customisation are you able (or willing) to do on your own?

What you decide will have an impact on costs, as well as how long it

will take to implement your new tools. You’ll also have to consider the

resources you need going forward in-house or whether you’ll pursue

other avenues, such as consultants, which could be pricey. Knowing

what you can afford will play into what you choose, but don’t overlook

the importance of tailored tools. You need technology that works for

your organisation, and customisation is a part of this.

Choosing disparate tools with zero integration

Related to customisation is integration. A big chunk of your overall IT

budget goes on supporting teams as they maintain and integrate a

complex toolchain. The easier you can make this, the better. Don’t fall

into the trap of picking tools with no integration features. You need to

consider integration from two angles: how integrated is each tool for its

specific function and how easily does it integrate with the entire

pipeline environment?

Technology pitfalls and how to avoid them

15

Being unable to put the work in to use a tool

Signing up for something and actually incorporating it into your pipeline

are two separate things. It’s easy to get excited about the potential

benefits of a tool without considering the work involved in getting

everyone to use it. Just because something requires effort and change,

it doesn’t mean it’s not worth doing, but make sure you’re aware of the

challenges ahead so you can plan for implementation.

Ignoring larger environmental needs

The same goes for doing your homework as far as your larger

environmental needs are concerned. As mentioned above, think about

where your architecture sits on the scale of monolithic to

microservices, what your workflows are like, and the skillsets of your

people. Don’t ignore questions around hosting – does your provider

already offer CI/CD technologies? Where is the data your applications

rely on going to be stored? Will the tool you’re considering be able to

handle new linkages and maintain the performance you need?

Having unreasonable automation expectations

In theory, successful CI/CD means automating as much as possible,

but you need to understand what that looks like in reality. Organisations

with a mature DevOps culture are capable of deploying code to

production hundreds of times per day, but zero intervention between

development and customer interaction isn’t optimal for many

applications. The goal of one-button automation should be measured

against the importance of human checks, to ensure compliance, for

example. You want tools that enable and encourage automation but

allow for manual reviews too.

16

Sidelining security tools

Don’t forget about security – you need to account for tools that allow

faster issue identification, notification, and better visibility so you have

a clear idea of the risks and vulnerabilities at each stage of the pipeline.

But an overly complex toolchain could weaken security. You might need

to pay more for tools with additional security functionality, but these,

combined with an efficient CI/CD process, will ensure data is safe, risk

is low, and there is efficient issue resolution when problems do arise.

Forgetting about the future

Don’t get too caught up in the here and now. When evaluating tools,

think about what comes next. Accommodating growth, headcount

goals, expansion plans, additional products and services, and M&A

activity into the new applications you choose today will avoid having to

retool down the line. Ask yourself whether free software will give you

the room you need to grow or could it limit your plans and your ability

to hit the numbers you're projecting?

With your people prepared and tools in place, it’s time to turn your

attention to the processes that facilitate a fast workflow with CI/CD.

Keep in mind that your processes should work with your people to

help them deliver value to customers, rather than making lives more

difficult. With powerful processes, integration becomes a non-event

and new products and features can be rolled out right when customers

need them.

The first step is plan. The second step? Plan some more. CI/CD

processes require a healthy dose of up-front organisation. Lots of the

processes you’re going to implement will be automated. Relying on

automation can’t be rushed. You need to establish a solid framework

that’s tailored to your organisation and business needs. What that

definitely doesn’t look like is leaving teams to figure things out for

themselves, hoping the best processes will surface during execution.

Far from it.

Sure, things will change and need to be adjusted as you move from the

planning phase into execution. You’ll go from focusing on big-picture

considerations to sweating the small stuff, looking at the details and

improving where you can. It’s IT management’s job to hold everyone

accountable for sticking to the plan or to justify changing it.

Part Four

Processes

17

Planning for success

As with people and tools, establishing secure processes is vital to the

future of your pipeline. Rather than planning for a perfect world where

security isn’t a concern, you need to plan for failure, attacks, and other

risks. Include security teams in your process planning at the start.

Containerisation is one strategy that can help, allowing internal

application processes to be isolated from one another. Automating

testing is important and should be a priority alongside compliance

testing. Consider inserting security gates into the pipeline too. That

way human intervention can confirm all protocols have been followed

prior to release.

Running before you can walk

It might sound obvious, but going from zero to a hundred can cause

problems. Lots of organisations choose to get started with CI instead,

building out their processes, before incorporating CD as well.

Remember the distinction we made between continuous delivery and

continuous deployment in part one? It’s worth remembering here that

focusing on getting good at CD is about building operational and

management confidence. Focus on that first, and then you can worry

about automating deployment too.

Process pitfalls and how to avoid them

18

Not considering consistency

Getting to a place where you’re comfortable with your CI/CD pipeline

requires you to establish a consistent cadence of builds and

deployments, helping you understand the pace your teams work at.

You’ll want to have clear rules around what triggers an automated build

or deployment. Version control (a single source of truth for all teams

with artifacts in one repository) and issue tracking are vital here. Don’t

worry if what you plan for might not be what’s needed, just be prepared

to adjust with experience.

Being noncommittal

Early and often is the way to go when it comes to integrating code into

the main branch. Working this way will avoid maintenance nightmares

for your engineers. For work in progress, code can remain invisible to

the end user or tester. Progressive delivery processed, like feature flag

management, will help to navigate and minimise merge conflicts.

Ignoring different types of deployments

While deploying often is the goal, don’t forget that not all deployments

are created equal. There are different options depending on business

needs, so you might want to include three frameworks, such as canary,

blue/green, and A–B testing. The first is a minimum viability product

type release for fast iteration; blue/green tests internal processes, such

as different routing methodologies, to help you figure out what works

better; and A–B testing is fairly common and customer-facing. It

reveals clear preferences in conversion, which can be spread elsewhere

in the application.

19

Only testing code

While it’s essential to test your deployment pipelines to the max,

mitigating defects and making improvements, don’t forget to put your

people to the test too. Part of quality management is making sure your

developers are checking into the trunk at least once a day, that every

check-in triggers an automated build and testing, and that if a build

breaks or a test fails, the problem can be solved in a few minutes.

Not making enough of metrics

Establishing and tracking metrics should be a big part of your initial

processes discussion. Some typical data points you should try to

measure include quality, speed of delivery, deployment frequency,

change lead time, change success/failure rate, mean time to recovery

from pipeline failure, and passing rate of security tests. Monitoring

your chosen metrics over time lets you spot emerging bottlenecks

as things evolve.

20

At its most basic level, your CI/CD strategy should be based around

automation – processes that support automation and keep it in

check, tools that enable automation to thrive, and people with the

skills to plan and implement automation while focusing on more

important work. Anything that can be repeated, such as building,

testing, and deployment, is ripe for automation. And anything that’s

automated should benefit from human intervention where it’s

prudent to do so.

CI/CD thinking, technology, and processes are what will enable your

organisation to keep up with the fast-paced global economy.

They’ll set your software apart from competitors’, giving you an

advantage in a crowded marketplace. And they allow you to keep

evolving, improving the quality of your software for your customers.

Internally, your teams will also benefit from increased efficiency and

be able to channel their skills into so much more than mundane,

repetitive tasks.

CI/CD is an intrinsic part of making your DevOps approach a reality.

It’s not something to be taken lightly or rushed into, but with careful

planning and a bit of courage, you can take steps towards a

transformative future for your organisation.

Conclusion

Automate, automate,
and automate some more

21

At Adaptavist, our DevOps solutions help you stay ahead of the game.

With our strong and dedicated team of experts, we combine the right

mix of strategic-led consultancy and technology-led solutions that

place people, process, and tools at the heart of your business strategy.

22

To discover DevOps in a whole new light

Contact us

https://www.adaptavist.com/solutions/transformation-consulting/devops

We help organisations transform to continuous change being their

business as usual. We do this by supplying technology, providing

advice, and delivering change through modern, iterative approaches to

development, deployment, and application lifecycle management.

Adaptavist is Atlassian’s largest platinum partner, supporting more than

half of the Fortune 500. We are uniquely placed to provide our

experience, expertise, and insight to help your business.

Whether you want training for your team, to build a software platform

for your company, or to automate your existing tooling, we can help

you. If you want to unlock the full power of Atlassian and transform

your business at scale, get in touch with our team today.

Copyright © 2021 Adaptavist, All Rights Reserved

Learn more or get in touch:

adaptavist.com

https://www.adaptavist.com/

