
	 	 	
	

	 	 	
	

	

USE	CASE:	MACHINE	CREATED	
AUTONOMOUS	TESTING	
by	Kevin	Surace,	Appvance	

	

Key	statement:	Quality	engineering	is	not	about	creating	and	managing	an	ever-increasing	
number	of	scripts,	but	to	simply	detect	more	defects	with	less	human	labor.	Using	a	huge	
automotive	ecommerce	website	as	concrete	proof	point,	we	demonstrate	how	AI	can	
provide	ten	times	the	application	coverage	of	typical	automated	findings.	It's	as	if	an	
additional	100	team	members,	all	of	whom	are	excellent	bug	hunters,	are	scouring	the	UX	
and	API	calls	as	well	as	validated	outcomes	for	any	flaws	or	unexpected	results.	

	

The	dream	of	fully	autonomous	testing	was	indeed	a	crazy	idea	in	2012,	until	Appvance	
launched	the	world’s	first	fully	autonomous	testing	in	2018.	What	is	autonomous	testing?	It	
isn’t	about	a	QA	engineer	or	developer	writing	scripts	and	then	kicking	off	with	Continuous	
Integration	(CI).	That’s	a	concept	we	have	had	much	of	since	1995.	It’s	a	generation,	
arguably	a	magnitude	leap,	beyond	writing	and	maintaining	scripts.		

	

The	driver	to	autonomous	testing	
The	reason	for	this	requirement	is	quite	simple.	And	follows	this	math:		
Assume	a	waterfall	process	with	eight	weeks	or	320	hours	to	update,	maintain,	and	execute	
tests	that	were	possibly	developed	several	years	ago.	Approximately	98%	of	all	testing	is	
now	performed	on	existing	apps	that	are	being	updated.	The	automated	testing	we	perform	
on	a	consistent	basis	throughout	the	industry	averages	approximately	10%	application	
coverage.	This	entails	assessing	each	user	activity,	page,	and	unique	state	in	nearly	any	flow.		

Why	don’t	we	have	more	application	coverage?	Because	it	requires	substantially	more	
effort	(around	10X)	to	maintain	that	many	scripts.	So,	we	settle	for	low	application	coverage	
but	high	test	coverage.	Test	coverage	was	defined	by	an	apparently	magical	Business	
Analyst	who	knows	what	every	user	does.	BUT	we	know	this	to	not	be	true.	How?	When	
users	find	issues	those	are	almost	always	issues	in	using	the	application	in	ways	we	didn’t	
test.	Because	had	we	tested	it	the	way	they	use	it	we	would	have	seen	the	same	functional	
bug.	If	we	had	limitless	resources,	we'd	like	to	increase	application	coverage	to	100%.	(or	
10	times	what	the	industry	average	is	today).	

At	the	same	time,	management	is	driving	to	Agile	and	DevOps	(and	BizOps)	processes.	
Reducing	testing	time	from	320	hours	to	one	hour	demands	a	320	times	increase	in	team	



	 	 	
	

2	

efficiency.	And	if	we	eventually	aim	for	100%	application	coverage	(which	means	that	
almost	no	defect	will	escape	our	tests),	that's	another	tenfold	gain	in	productivity.	That's	a	
320	x	10	or	3200	times	gain	in	productivity	if	we	aim	to	detect	all	issues	in	one	hour.	
Whether	your	organization	is	moving	there	slowly	or	quickly,	you	are	heading	in	this	
direction.	

In	2012,	the	math	indicated	that	this	would	already	become	the	big	issue,	and	no	one	would	
hire	3,200	additional	quality	assurance	personnel	to	augment	the	existing	workforce	(of	
course).	And	3,200	workers	would	be	incapable	of	coordinating	to	produce	a	3,200	times	
increase	in	productivity	in	any	case.	

What	I've	observed	is	that	teams	begin	to	reduce	the	number	of	tests	they	conduct	in	order	
to	reach	the	1-hour	deadline	and	hope	they	checked	the	right	things.	And	as	a	result,	users	
frequently	find	more	issues	than	ever	before	and	revert	in	production.	

Our	approach	to	providing	Augmented	Intelligence	
This	here	is	where	artificial	intelligence	excels.	While	the	term	AI	(artificial	intelligence)	is	
frequently	misused	in	marketing,	the	notion	refers	to	a	wickedly	fast	and	intelligent	
machine	capable	of	performing	numerous	jobs	orders	of	magnitude	faster	than	humans.	I	
prefer	to	refer	to	AI	as	truly	AUGMENTED	intelligence.	It	augments	us	humans	so	that	we	
can	concentrate	on	being	its	overlord	and	studying	the	outcomes,	rather	than	struggling	for	
a	day	with	a	selenium	script.	Allow	the	machine	to	perform	the	more	or	less	monotonous	
tasks.	

We	addressed	the	development	of	an	AI	capable	of	independently	creating	tests	and	
detecting	defects	as	a	3-part	challenge.	

1) Train	the	AI	on	your	application	one	time	(perhaps	production	release)	to	establish	
a	baseline	of	UI	and	API	requests/responses	

2) Run	a	new	AI	Blueprint	at	each	new	build,	allowing	the	AI	to	learn	what	changed	on	
its	own	and	create	scripts	based	on	models	and	limits	provided	in	training	

3) Fine-tune	the	scripts	based	on	learning	from	standard	API	production	logs	and	
upscaling	those	API	requests	to	UX	actions.	

	



	 	 	
	

3	

	

Example	of	an	AI	Training	Session	

	

We	discovered	that	we	needed	to	replicate	human-like	learning,	behaviors,	and	decisions	in	
order	to	develop	end-to-end	testing	that	did	not	require	human	intervention.	We	identified	
19	potential	application	areas	for	machine	learning.	As	explained	in	the	“Demystifying	
Machine	Learning	for	QE”	chapter,	this	is	referred	to	as	machine	learning,	as	opposed	to	
deep	learning	or	neural	nets,	which	require	massive	clean	data	sets.	Your	application	is	not	
a	good	fit	for	the	neural	network	model.	We	outline	all	these	processes	in	3	seminal	US	
patents:	10204035,	10552299	and	10628630.	

This	technology,	known	as	Appvance	IQ	(AIQ),	is	used	across	all	types	of	applications,	
ranging	from	consumer-facing	to	SAP,	Salesforce,	and	ServiceNow.	

AIQ	architecture	
AIQ	is	a	highly	scalable	system	consisting	of	a	controller	(which	test	users	access)	which	
launches	unlimited	testnodes.	These	testnodes	actually	execute	the	virtual	users.	AIQ	can	be	
deployed	in	the	Appvance	cloud	or	behind	the	client’s	firewall.	The	AIQ	AI	library	has	
already	learned	how	to	interact	with	thousands	of	UI	actions	from	prior	encounters	as	well	
as	human	assisted	learning.	These	libraries	get	updated	for	all	users	every	few	weeks.	The	
critical	point	is	that	the	additional	learning	is	focused	within	each	build	of	an	application.	It	
determines	what	has	changed	and	verifies	that	the	change	is	legitimate.	In	some	cases,	the	
system	only	notes	specific	changes	rather	than	decides	if	they	are	indeed	bugs.	In	other	
cases,	they	are	obvious	bugs	and	tickets	are	automatically	filed	in	Jira	(or	equivalent).	
Autonomous	testing	is	kicked	off	at	each	new	build	by	a	CI	tool	(such	as	Jenkins)	to	support	
an	agile	or	DevOps	pipeline.	And	tests	can	be	targeted	as	functional,	compatibility,	
performance/load,	or	security	tests,	all	withing	the	same	infrastructure	and	execution	
engine.	



	 	 	
	

4	

A	broad	set	of	machine	learning	algorithms	are	employed	to	learn	from	prior	builds	and	
make	decisions	on	current	test	creation.	For	example,	a	predator/prey	algorithm	is	
employed	in	creating	UI	scripts	from	standard	server	API	logs.	As	on	any	application	page,	a	
user	could	take	many	routes.	The	logs	reveal	certain	API	requests	which	must	be	grouped	
into	known	groupings	for	all	requests	on	one	page.	Then	that	logged	grouping	is	scored	as	
to	its	match	to	all	actions	a	user	COULD	take.	Because	this	is	a	nearly	unlimited	possibility,	
we	continually	score	the	top	three	"winners"	and	eliminate	all	others,	then	add	additional	
possibilities	and	repeat	the	process	until	there	is	a	single	winner.	In	this	way,	we	avoid	
overburdening	a	system	with	limitless	alternatives	and	instead	maintain	only	the	top	three,	
therefore	constricting	the	problem.	The	algorithm	is	extremely	quick,	and	it	can	resolve	a	
single	user	action	from	hundreds	of	possible	actions	in	less	than	a	second.	Bear	in	mind	that	
machine	learning	is	ultimately	just	math.	We	learn	from	the	past,	build	a	model	and	apply	
that	to	the	new	information,	ultimately	seeking	the	best	match	(or	path	or	action	etc.).	We	
learned	in	the	above	example	from	both	the	current	blueprint	of	the	current	build	(the	
present)	and	possibly	50GB	of	API	logs	(the	past).	We	must	map	the	past	to	the	present	with	
the	best	match	possible.	As	a	result,	5000	scripts	are	written	in	less	than	ten	minutes,	
recreating	the	bell	curve	of	real-world	user	flows	from	production	and	mapping	them	
to	the	new	build.	Without	any	modifications	to	the	application.		

From	an	architecture	standpoint,	a	false	positive	should	be	impossible.	Because	it	is	actually	
a	machine,	the	system	will	report	only	those	bugs	that	you	have	permitted	(such	as	
validating	an	outcome	which	was	not	achieved,	or	an	API	response	delay	and	many	more).	
In	practice,	we	encounter	only	absolute	and	intermittent	bugs,	not	false	positives.	While	
certain	bugs	may	be	the	result	of	the	QA	server's	inability	to	handle	a	large	number	of	
threads,	they	are	still	bugs	by	any	standard.	However,	the	remedy	would	be	to	bolster	the	
QA	server	in	order	to	resolve	them.	However,	the	system	will	not	report	something	that	did	
not	occur.	It	makes	no	judgments;	it	simply	reports	the	facts.	

AIQ	is	frequently	used	across	the	environment	chain,	including	through	staging	and	
production.	Additionally,	it	can	be	employed	in	the	synthesis	of	synthetic	APM.	

	

Applying	autonomous	testing	at	a	large	ecommerce	player	
This	case	study	is	comparable	to	hundreds	that	have	been	published	recently.	This	
corporation	handles	several	billion	dollars	annually	of	sales	in	the	automotive	space.	They	
have	a	mature	consumer	facing	website	that	contains	catalog,	search	and	purchasing	
functionality	along	with	other	information.	

They	have	hundreds	of	automated	selenium	scripts	as	well	as	manual	testers.	They	
deployed	AIQ’s	autonomous	testing	to	augment	their	existing	test	activities.	

Setup	(AI	Training)	for	this	web	application	took	several	hours.	Training	is	accomplished	by	
the	autonomous	engine	walking	through	the	application	a	few	pages/states	at	a	time	and	
surfacing	actions	which	users	might	take.	These	includes	clicks,	forms,	dropdowns	etc.	As	
these	are	surfaced	to	the	trainer	in	the	AI	workbench,	the	trainer	can	choose	how	the	



	 	 	
	

5	

system	will	handle	each	action.	In	most	cases,	we	leave	them	to	be	acted	upon	as	a	human	
would.	However,	for	certain	actions,	we	may	choose	to	limit	interaction	to	never,	or	once	
per	application	or	perhaps	once	per	page.	We	mapped	the	fields	to	CSV	data	or	to	generated	
data.	We	did	not	want	to	test	all	4	million	inventoried	items	in	this	ecommerce	application,	
so	we	specifically	limited	anything	that	appeared	to	be	a	new	inventory	possibility	to	only	
one	time	for	the	application.	This	allowed	us	to	focus	on	the	distinct	pages	and	states,	rather	
than	repeatedly	presenting	the	same	inventory	presentation	page.	

Additionally,	AI	Training	considers	validations,	which	refer	to	the	fact	that	certain	specific	
flows	or	input	values	which	result	in	a	particular	outcome.	This	is	a	more	abstract	term	than	
"asserts,"	as	it	applies	throughout	an	application	and	through	dozens,	if	not	hundreds,	of	
user	flows.	This	is	in	direct	opposition	to	the	way	we	were	taught	to	keep	the	number	of	
user	flows	we	test	to	a	minimum	and	to	test	assertions	only	once.	Here	we	have	an	
extremely	fast	machine	that	is	capable	of	writing	and	checking	results	100,000	times	faster	
than	humans.	Rather	than	reducing	or	limiting	testing,	we	now	want	to	prioritize	maximal	
application	and	validation	coverage.	

When	the	baseline	setup	was	complete,	we	were	ready	to	execute	a	new	AI	blueprint	on	the	
next	build.	The	blueprint	was	successfully	kicked	off	and	finished	42	minutes	later	finding	
234	unique	pages	and	hundreds	of	actions,	writing,	and	executing	several	hundred	scripts.	
The	autonomous	system	follows	a	course	as	a	human	would.	It	accomplishes	this	by	making	
educated	guesses	about	every	component,	from	interactions	with	thousands	of	elements	to	
page	state	judgments	to	match	scoring.	Rather	of	relying	on	a	single	machine	learning	
algorithm,	we	use	19	various	machine	learning	algorithms,	each	of	which	attempts	to	solve	
small	problems	depending	on	past	information	about	the	application	or	applications	in	
general.	Bayesian	curves,	predator	prey,	recursive	error	reduction,	decision	trees	and	other	
traditional	algorithms	are	employed.	In	this	case,	the	system	was	asked	to	deploy	up	to	100	
threads	(bots)	in	parallel,	each	integrating	with	the	other	to	not	overlap	user	flows.	



	 	 	
	

6	

	
Example	of	a	running	AI	Blueprint	

	

The	results	were	in	after	the	first	blueprint	was	completed.	110	new	bugs	were	identified.	
These	UI	and	API	bugs	were	not	found	in	the	teams	traditional	automated	and	manual	
testing.	The	bugs	consisted	of	malformed	API	requests,	API	non-responses,	4xx	and	5xx	
responses	as	well	as	some	very	slow	responses.	Each	of	these	had	a	negative	impact	on	the	
user	experience	in	some	way	but	had	not	been	found	through	conventional	techniques.	The	
team’s	responses	were	typical:	

“These	bugs	aren’t	real	(it’s	a	machine…it	doesn’t	post	false	positives).”	

“These	bugs	didn’t	matter."	Ah,	but	they	did	as	you	see.	

“And	that	one	was	an	impossibility”.	

“We	would	have	found	it	before.”	



	 	 	
	

7	

	
Example	of	AI	Blueprint	Dashboard	

	
	
Each	new	blueprint	will	add	data	to	the	baseline	(learning	at	each	build)	and	set	itself	up	for	
success	for	the	next	build.	And	if	accessors	change,	it	adapts	to	those	changes	(no	
maintenance	required)	as	well	as	changes	in	user	flow,	reporting	variances	to	a	QA	team	as	
desired.	As	the	team	dug	into	the	results,	they	were	able	to	reproduce	each	error	on	their	
own.	AIQ	hands	them	the	scripts	which	it	wrote	that	caused	each	bug.	They	can	be	run	in	the	
IDE	right	on	a	developer’s	desktop.	Each	bug	was	verified	to	be	genuine,	and	each	was	
addressed	and	resolved	within	weeks.	

One	noteworthy	bug	occurred	when	a	UX	action	caused	the	generation	of	almost	200	API	
calls,	with	all	but	one	being	returned.	This	client-side	call	was	related	to	a	UK-based	
server.	Despite	the	client's	insistence	that	such	a	request	was	impossible	to	be	in	their	
code,	the	machine	observed	it.	And	the	machine	doesn’t	lie.	Of	course,	they	verified	this	
for	themselves	by	running	the	autonomously	generated	script	on	a	desktop	computer.	As	
it	turned	out,	that	server	was	shut	down	three	years	ago,	but	some	shared	client-side	
code	continued	to	request	and	never	received	a	response,	resulting	in	a	somewhat	
erroneous	page.	Despite	this,	none	of	their	tests	or	testers	ever	encountered	it,	or	if	they	
did,	they	failed	to	pinpoint	the	main	cause.	However,	the	AI	system	accomplished	
precisely	that.	We	discovered	the	root	cause	on	day	one.	We	did	not	use	the	server	logs	to	
generate	more	precise	use	cases	in	this	situation,	although	we	did	later	discover	several	
additional	concerns.	

	

	
Example	of	tracking	AI	test	results	over	time	



	 	 	
	

8	

Summarizing	
There	are	many	objections	upfront	to	deploying	such	a	system	including	We	don’t	need	it,	
It’s	not	better	than	what	we	do,	How	can	AI	know	our	exact	important	business	flows,	I	
don’t	believe	AI	can	find	bugs	our	team	can’t.	

I	can	easily	(and	deeply	if	we	had	another	few	thousand	words)	answer	these	early	
objections.	But	I	would	summarize	in	this	way…ANY	system	which	can	augment	our	teams	
bug	finding	in	less	time	with	limited	oversight	is	a	very	good	thing	indeed.	

AIQ	is	not	meant	to	be	a	replacement	to	QA	teams.	It’s	meant	to	augment	your	work	and	add	
to	your	skills	as	a	team,	not	take	any	away.	In	time	teams	trust	and	rely	on	the	results.	AIQ	
can	and	will	find	most	bugs	long	before	your	users	do,	can	create	and	run	scripts	100,000X	
faster	than	humans	alone,	and	can	see	UI	to	API	issues	clearer	than	humans	can.		

As	we	move	to	become	DevOps	teams,	we	must	lean	into	AI	autonomous	testing	to	generate	
more	scripts	and	find	more	bug	in	our	very	precious	short	release	cycles.		

We	all	win	when	we	deliver	cleaner	releases.	And	it	makes	our	job	frankly	much	more	fun.	

	 	



	 	 	
	

9	

	

About	the	author	

 
 
Kevin	is	CTO	and	Chair	of	Appvance.ai,	a	leader	in	AI	based	autonomous	testing.	He	has	
been	awarded	93	worldwide	patents.	
	
https://en.wikipedia.org/wiki/Kevin_Surace		
Twitter:		https://twitter.com/kevinsurace		
Linkedin:	https://www.linkedin.com/in/ksurace/		
	

About	Appvance	

Appvance.ai	is	the	leader	in	AI-driven	test	generation,	which	is	revolutionizing	how	
software	testing	is	performed.	The	company’s	premier	product	is	Appvance	IQ,	the	world’s	
first	AI-driven,	unified	test	automation	system.	It	helps	enterprises	improve	the	quality,	
performance	and	security	of	their	applications,	while	transforming	the	efficiency	and	output	
of	testing	teams.	Appvance.ai	is	headquartered	in	Santa	Clara,	California,	with	offices	in	
Costa	Rica	and	India.		
	
	
Visit	us	at		
https://www.linkedin.com/company/appvance/	
https://twitter.com/appvance	
https://www.facebook.com/AppvanceInc/		
	


