
C O P Y R I G H T 2 0 2 0

Continuous
Testing for Mobile

SPECIAL REPORT

In the race to deliver new product to market, organizations are finding more and more that they need to adopt every competitive
advantage they can get. One option for releasing software faster, reducing integration problems, and lowering costs is continuous testing.

In this eGuide, you will explore the reasons that organizations are embracing continuous testing, best practices for getting continuous
testing right, how a DevOps approach can help improve both your quality and your speed, and other continuous testing resources.

Bringing Continuous Testing to Your Organization
Consumers are more tech-savvy than they’ve ever been and less tolerant of
defects, so applications suffering from bad behavior can have extremely neg-
ative effects on your brand. To reduce these risks, organizations are doubling
down on their quality initiatives, and the software development industry is
embracing continuous testing as a mainstream activity. So how do you bring
continuous testing to your organization?

Why You Need Continuous Testing in DevOps
DevOps is more than adopting the right set of tools; it’s a cultural shift that
incorporates testing at each stage of the agile project lifecycle. Continuous
testing is key to unlocking this culture change because it weaves testing ac-
tivities into every part of the software design, development, and deployment
processes, which helps everyone involved communicate more, collaborate
better, and innovate faster.

How Continuous Testing Is Done in DevOps
DevOps does speed up your processes and make them more efficient, but
companies must focus on quality as well as speed. QA should not live outside
the DevOps environment; it should be a fundamental part. If your DevOps
ambitions have started with only the development and operations teams,
it’s not too late to loop in testing. You must integrate QA into the lifecycle in
order to truly achieve DevOps benefits.

A DevOps Approach to Mobile App Development
The DevOps approach has completely transformed the mobile app development scenario,
and it’s a good option for any business looking to create an app. DevOps facilitates col-
laboration between developers, operations staff, and project managers to better fulfill the
objectives of an enterprise app development project. In order to adopt a DevOps approach
to your app development, you will need to consider 5 important factors.

5 Mistakes to Avoid When Beginning Mobile Continuous Testing
Looking to institute continuous testing within your organization? Successful planning can
yield a smooth and precise continuous testing strategy that increases performance, app
quality, DevOps and overall agility. Through his work with enterprise mobility teams, see
what the author has identified as the five common roadblocks that mobile developers and
testers often stumble over when starting out and how to avoid them.

Why Building a Continuous Delivery Pipeline is like a game of Mousetrap
Do you remember the board game Mousetrap? If you’re familiar with this game, then you
know that each action in the game sets off an entire chain reaction that is necessary for you
to capture your opponents’ mice. Each step in the game is dependent on the step right before
it and right after it. Building a continuous delivery process flow is similar. You know that you
have a series of steps that must be created and successfully executed to build a mobile appli-
cation. But, along the way, your team may find issues that need to be addressed quickly.

Additional Continuous Testing Resources

In this Continuous Testing for Mobile Special Report

2C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

Businesses are focusing more and more on customer
experiences as part of their go-to-market strategy,
and a key piece of the customer’s experience is their
ability to traverse through your software in a quick
and seamless way. Consumers are more tech-savvy
than they’ve ever been, and less tolerant of defects,
so applications suffering from bad behavior can have
extremely negative effects on your brand.

To reduce these risks, organizations are doubling
down on their quality initiatives, and the software de-
velopment industry is embracing continuous testing
as a mainstream activity.

What Is Continuous Testing?
Continuous testing is a principle of software testing in
which all your tests are executing all the time, provid-
ing continuous feedback into the quality and health of
your applications.

In order to achieve continuous testing, organizations
must first adopt test automation. There are many
types of test automation, spanning the breadth of an
application starting at the UI layer, through the middle-

ware systems, and even into back-end systems. Under-
standing how to bring in these different types of test
automation practices as efficiently as possible enables
you to move toward the path of continuous testing.

It All Starts with Building a Test
Automation Strategy
The test pyramid, popularized by Michael Cohn and
Martin Fowler, identifies that we should have different

quantities of different types of testing activities. At the
base, we want to establish broad coverage of the unit
and API tests. These types of tests are easier to run in
automation but often require technical skill to build.
The top of the testing pyramid has automated UI tests
and manual tests. We want this type of testing activity
at the top because it’s the only way to ensure the
customer experience.

Most people focus on the bottom and the top of the
testing pyramid with an “automate what’s manual”
approach for UI testing and a “developers should
test” mentality for unit testing. While these practices
are important, focusing on the top and bottom creates
a gap in the middle, at the API layer, between the UI
and the code.

This gap is only going to continue to become more
problematic, with a recent report from Programma-
bleWeb showing over 22,000 publicly available APIs
in their directory, with the number steadily climbing.
API testing is more critical than ever, and it needs to
become an integrated part of the continuous testing
strategy that you’re building.

Bringing Continuous Testing to
Your Organization
By Chris Colosimo

3C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

Choosing the Right API Testing Solution
It all starts with choosing an API testing solution that can grow
with you as your API testing maturity grows. Key features that
you might need depend on your industry, application, and your
organization’s unique requirements. But once you’ve chosen a
tool, how do you get started?

There are three critical steps to achieve functional test automa-
tion faster.

Step 1: Establish broad test coverage of your existing APIs for
automation
By building scriptless tests from web recordings and API con-
tracts, and then using those tests to continuously validate the
health of your APIs, you can ensure that the APIs are working
as they were designed. Think of this as unit testing for APIs, but
without the grunt work.

Not only is this a valuable testing technique, but it’s also one of
the earliest types of functional test validation you can do, be-
cause service contracts for APIs are usually one of the first things
that are written as new features or functionalities are created.

As an example, let’s say that the team has added some new
functionality to our application. As a first step, the development
team published a new service definition. In this case, a Swagger
document was generated. The new service being added was a
RequestLoan service, which takes a series of inputs and responds
with a loan provider for the new loan.

To test this service, I could consume the Swagger YAML and cre-
ate a series of clients for each individual operation.

4C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

One of those clients would be the request loan ser-
vice. I could create a series of inputs, both positive
and negative, to validate that the service behaved
appropriately. I could then repurpose these tests for
regression purposes.

Of course, while this type of testing is extremely valu-
able, it’s only half of the API testing puzzle, because it
doesn’t validate how the APIs are actually being used.
Enter step 2.

Step 2: Bridge the gap between UI and API
The second part of the API testing strategy is being
able to model human usage of your application into
complete API test scenarios.

You can start to bridge that gap in the testing pyramid
by taking advantage of artificial intelligence to aug-
ment your ability to understand what’s actually hap-
pening behind the scenes when users are navigating
your application, and interpret those behind-the-scenes
transactions as API calls. This type of testing allows you
align the user experience with your critical API tests.

AI is a key component of the strategy because we can
reliably use AI to help us break down these commu-
nications into relationships and patterns, so we can
understand the business rules of how our applications
are being tested. We can bring this together with our

unit-level API testing to get broad coverage of our
API spectrum.

Continuing my example, you will notice that the re-
quest loan service requires inputs from other areas of
the application:

While I could provide customer IDs from accounts
arbitrarily, I really need them to exist in my applica-
tion, so I will need to create a dynamic scenario where
I first query the individual user to obtain the customer
ID and account ID so that I can hand that informa-
tion off to the request loan service and ensure that a
dynamic scenario works as described. Ensuring that
I’m working with real dynamic data ensures that that
behavior that exists as a result of APIs interacting with
each other can be fleshed out.

While these types of techniques will allow us to shift
API testing practices left and create broad coverage of
our applications in the earliest stages possible, there
is a third critical component of this practice: our ability
to understand and adapt to change.

Step 3: Ensure confidence through a maintainable
change management process
I’ve spoken to so many people about their functional
testing initiative that fell flat once their application
changed. This is a common occurrence because
testers spend the majority of their time building rich
and great API tests, only to have them break when the
application’s APIs change. This can have the cumula-
tive effect of reducing confidence in the API testing
strategy because testers are spending a large portion
of their time maintaining their API tests instead of
building new value.

Parameter Description Parameter Type Data Type

customerId Customer’s ID query integer

amount Amount query double

downPayment Down payment for
the loan query double

fromAccountId Customer funds source
account query integer

5C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

Change management is a key piece of any functional
testing strategy, and AI can be a critical enabler here
as well. By automatically scanning service definitions
(yes, the same service definitions used to initially
create the test cases) to identify when your APIs have
changed, you can understand when you’ll be impact-
ed, and then build a template for migrating existing
services to the new version.

In the first part of this example I made the statement
that a new service was added to my application. This
actually represents API change. Since I created the first
round of baseline tests using the service definition,
I can compare the different versions of the service
definition to each other to identify what has changed
and to build a map to update my existing test cases.

Upon reviewing the change template, it becomes clear
that not only has a new service been added, but many
of my existing services have been refactored. In the
image to the left, you will notice that “GET customers”
has a series of new fields that have been added. Using
a change management workflow will allow you to pro-
actively identify service changes while at the same time
managing the updating of existing test cases, so you
can recover from the change as quickly as possible.

This is arguably the most important practice you must
establish when building your functional testing strat-
egy. Understanding this and having a commitment
to quality from the beginning will help you and your
organization adopt this practice.

[Using a change
management workflow]
is arguably the most
important practice you must
establish when building your
functional testing strategy.

6C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

What about Flaky Test Environments?
It would be easy to stop there, with your excellent test
automation enabling continuous testing. But say you’ve
spent a good amount of time building this rich and
powerful functional testing strategy, you run your tests
in your environment as part of your automated nightly
continuous testing process, and upon reviewing the
results, you see that a large portion of your tests have
failed due to a system that’s outside of your control.

Does this mean that your tests were bad? Are you now
being held responsible for systems that are technically
out of scope for your testing?

This is not an uncommon story. We know that func-
tional tests can only be as effective as the test environ-
ments in which they execute. Unstable, unavailable,
or just plain flaky test environments can reduce the
return on investment we get from our functional test-
ing tools. So I must, at least briefly, mention one of the
best ways to stabilize your test environments: service
virtualization.

Not to be confused with virtual machines (that’s hard-
ware virtualization), service virtualization enables you
to simulate the services that are communicating be-
tween different pieces of hardware. For example, think
of an application calling a database. Do you actually
need that database in your test environment? What if
it doesn’t have the data that you need? With service

virtualization, you can record the transactions with the
database and then use that recording to create a sim-
ulated version of that database, with all the behaviors
you want for your test environment. But of course, it
doesn’t stop at just databases; it can be any type of
service, such as a SOAP or REST API, or even TCP and
microservices.

As part of building a sustainable API testing strategy,
you’ll need to build a sustainable service virtualization
strategy, and that starts with answering questions like:

• What services are good candidates for virtualization?
• How are virtual services created?
• How can I maintain a virtual environment?
• How can I deploy a virtual environment as part of

my continuous testing strategy?

Service virtualization is a key enabler for a sustainable
continuous testing strategy, but understanding where
and when to bring it in and how to be as effective as
possible is key to success.

Get Started with Continuous Testing
Now that you have a better understanding of how
to integrate API testing as part of your continuous
testing strategy, the next step is to get going! Get en-
gaged with an API testing tool vendor, and start with
step one. Understanding the end goal as you begin
will help you make smart choices along the way.

As part of building
a sustainable API
testing strategy,
you’ll need to build a
sustainable service
virtualization strategy.

7C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

The agile process is all about using short, flexible
development cycles to respond quickly to customer
needs. Doing this effectively these days involves build-
ing a DevOps software pipeline in order to quickly get
high-quality software into the hands of your custom-
ers and receive feedback.

Most DevOps initiatives start with the adoption of con-
tinuous integration (CI) practices, where code is con-
tinuously integrated to make sure everything works
together. Developers start the CI process by checking
code into a shared repository many times a day. Each
check-in is verified by an automated build process and
some fast-running tests, allowing teams to detect er-
rors and conflicts as soon as possible. Regression tests
are run at least each night to make sure any changes
made during the day did not break something else.

After CI is performed, a continuous delivery process
is followed, where the application is further tested
and, once it passes all the required tests, it’s available
to release into production. The upside of continu-
ous deployment is that it delivers new functionality
to users within minutes, as well as instant feedback

to the team that allows rapid response to customer
demands. Effective testing during your continuous de-
ployment process is critical because without it, there
is a big risk of continuously releasing buggy software
into production.

Don’t Let Testing Practices Slow You Down
Continuous testing, which is often called shift-left
testing, is an approach to software and system testing
in which testing is performed earlier in the software
lifecycle. The goals are finding defects earlier, increas-
ing software quality, shortening long test cycles, and
reducing the possibility of software defects making
their way into production code during deployments.
Continuous testing is critically important if your
company is trying to use DevOps to deploy software
frequently into production.

Done right, continuous testing provides fast and
continuous insight into the health of the latest build of
your application. This information can then be used to
determine if the app is ready to progress through the
delivery pipeline at any given time. Because testing
begins early and is executed continuously, bugs are

exposed soon after they are introduced, which reduc-
es the time and effort needed to find and fix them.
Consequently, it is possible to increase the speed and
frequency at which bug-free, high-quality software is
delivered, as well as decrease technical debt.

Why You Need Continuous Testing
in DevOps
By Tom Alexander

8C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

Technical debt refers to the price organizations pay
when releasing badly designed code. It’s a way of
calculating the cost of additional rework caused by
choosing an easy and quick solution now instead of
using a better, less buggy approach that would take
longer. Just like financial debt, technical debt incurs
interest that must be paid, such as increased main-
tenance, support, or legal costs. By shortening the
time it takes to fix buggy software, continuous testing
helps pay down your technical debt by keeping these
interest costs from accruing.

DevOps is a cultural shift that promotes collaboration
among all teams, including development, quality assur-
ance, operations, and others, such as performance
management, release management, and maintenance
teams. Consequently, there is no single product that
can be considered the definitive DevOps tool. Often, a
collection of tools from a variety of vendors is used in
the stages of a DevOps process. Continuous integra-
tion is often seen as the backbone of a continuous de-

livery pipeline, which explains the popularity of CI tools
such as Jenkins and Bamboo to build, test, and deploy
applications automatically when requirements change.

Companies using DevOps often ship new software
into production hundreds of times every day. These
companies are delivering smaller pieces of software,
collaborating, and monitoring in production to create a
continuous flow of code, from check-in to production.
And they’re using continuous testing technology to
weave testing activities into every part of their soft-
ware design, development, and deployment processes.

Let Tech Do the Heavy Lifting
To release high-quality code faster, your organization
needs to let tech do the heavy lifting by adopting
next-generation tools and practices that enable you to
test early, often, automatically, and continuously.

By executing the right set of tests at the right stage
of the delivery pipeline—without creating a bottle-

neck—these tools enforce agile principles by providing
appropriate feedback at every stage of the process.
This enhanced communication averts duplication of
efforts and increases alignment among dev, ops, and
testing teams, which will allow you to deliver software
on tighter schedules.

But these streamlined schedules are only possible if
test automation is seamlessly integrated into your
software delivery pipeline and DevOps toolchain.
Test automation works by running a large number of
tests repeatedly to make sure an application doesn’t
break whenever new changes are introduced. Manu-
al testers are often still involved in DevOps projects,
performing testing while an automation test suite
is constantly running—but their role needs to shift
toward a session-based exploratory testing approach,
focused on areas with the most risk or where automa-
tion is not effective.

By shortening the time it takes to fix buggy software,
continuous testing helps pay down your technical
debt by keeping these interest costs from accruing.

9C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

The image below shows an example DevOps pipeline
that incorporates continuous testing during check-ins,
continuous integration, and continuous delivery.

A Continuous Testing DevOps Toolchain
While not an exhaustive list of all available DevOps
products, here’s a checklist of tools that together
make up a viable continuous testing DevOps toolchain.

Planning Tools
If you’re looking for a tool that makes it easy for
different teams to collaborate, Jira is an agile project
management tool that supports any agile methodol-
ogy, be it Scrum, kanban, or your own unique flavor.
From agile dashboards to reports, you can plan, track,
and manage all your agile software development proj-
ects. Jira’s wide range of integrations also helps you
connect to almost any other tool you’re likely to need.

Dev Tools: Desktop or Cloud-based IDEs
While Eclipse and Visual Studio are the most popu-
lar desktop IDEs, Cloud9, developed by Amazon Web
Services, and JSFiddle lead in the cloud.

Version Control Systems (VCS)
There are several web-based hosting services for
DevOps version control, including Microsoft’s GitHub,
Atlassian’s Bitbucket, and the open source GitLab
service. All work within standard desktop or cloud
IDEs to ease the processes of source code check-in
and checkout.

Build Tools
Jenkins is a CI/CD server that builds applications, runs
tests automatically, and pushes code through your
DevOps pipeline every time a developer checks new
code into the source repository. Because of the rich

10C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

ecosystem of plugins, Jenkins can be used to build,
deploy, and automate almost any software project.

Bamboo is a CI/CD server from Atlassian. Like Jenkins
and other CI/CD servers, Bamboo allows developers
to automatically build, integrate, test, and deploy
source code. Bamboo is a commercial software that
is integrated and supported out of the box with other
Atlassian products, such as Jira for project manage-
ment and Hipchat for team communication.

Automated Testing Tools
Cucumber is a tool for specifying application features
and user scenarios in plain text. Cucumber runs auto-
mated acceptance tests written in a behavior-driven
development (BDD) style that encourages collabo-
ration on software projects by writing test cases in a
natural language that nonprogrammers and domain
experts can read.

Selenium is a suite of different open source software
tools that enable automated testing of web applica-
tions across various browsers and platforms. Most
often used to create robust, browser-based regression
automation suites and tests, Selenium, like Jenkins,
has a rich repository of open source tools that are
useful for different kinds of automation problems.

Agile teams can execute one-touch control of test au-
tomation from within the Zephyr platform with Vortex,
Zephyr’s advanced add-on that allows you to integrate
with a growing suite of automated testing frameworks
(including eggPlant, Cucumber, Selenium, UFT, and Tri-
centis) with minimal configuration. Besides being able
to control the execution of thousands of automated test
cases, Vortex makes it easy to automatically create test
cases from test scripts and to apply insights from ana-
lytics on both automated and manual testing activities.

Session-Based Exploratory Testing
PractiTest is a test management system that supports
session-based exploratory testing practices. Ses-
sion-based exploratory tests are created and added to
a test set during testing. These tests can be combined
with other types of tests, including structured manual
and automated, to maintain test suites, traceability,
and test coverage.

Capture for Jira helps testers on agile projects create
and record exploratory and collaborative testing
sessions, which are useful for planning, executing, and
tracking manual or exploratory testing. Session-based
test management, a type of structured exploratory
testing, is an extremely powerful way of optimizing
test coverage without incurring the costs associated
with writing and maintaining test cases. Like Zephyr
for Jira, Capture for Jira has a deep integration with
the Jira platform, allowing users to capture screen-
shots within browsers, record screens in Chrome,
create annotations, and validate application function-
ality within Jira.

Deployment Tools
Longtime “movers and shakers” in the DevOps infra-
structure-as-code space, Chef and Puppet are both
automated configuration management and orches-
tration tools used to quickly spin up compute and
storage instances on demand.

Test Continuously to Deliver Faster
DevOps is more than adopting the right set of tools;
it’s a cultural shift that incorporates testing at each
stage of the agile project lifecycle. Continuous test-
ing is key to unlocking this culture change because it
helps everyone involved communicate more, collabo-
rate better, and innovate faster.

DevOps is more than adopting
the right set of tools; it’s a
cultural shift that incorporates
testing at each stage of the
agile project lifecycle.

11C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

The adoption of DevOps practices is dramatically in-
creasing throughout many different industries, mostly
due to companies recognizing the numerous benefits
DevOps is able to deliver.

DevOps does speed up your processes and make
them more efficient, but companies that solely focus
on speed and ignore quality aspects are likely to suffer
a huge blow. Teams should focus first on quality by
reducing defects and bugs before working on speed-
ing up their operations.

DevOps is all about better enabling the software test-
ing process to deliver quality results within a shorter
time frame. Consequently, quality assurance is an
important aspect of the DevOps methodology. Inte-
grating QA within DevOps helps companies focus on
giving their clients quality software before it ships.

Integrating QA within DevOps also plays a vital role in
managing risks by ensuring the application is robust
and stable throughout the development process.
Continuous testing as part of a DevOps method helps

detect bugs quickly, when they are easier and less
expensive to fix, ensuring your application is fit for
usage and enhancing a good user experience.

QA should not live outside the DevOps environment;
it should be a fundamental part. But if your DevOps
ambitions have started with only the development and
operations teams, it’s not too late to loop in testing.

You must integrate QA into the lifecycle in order to
truly achieve DevOps benefits.

Why Should You Perform Continuous
Testing In DevOps?
Software projects, websites, and applications are not
static. They require regular updates and real-time
changes to fulfill all the set requirements of the clients.

How Continuous Testing Is Done
in DevOps
By Junaid Ahmed

12C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

These changes used to be time-consuming and peril-
ous, but now they can be attained more easily through
continuous integration, continuous deployment, and
continuous testing.

DevOps allows software testing teams to easily up-
grade and deliver various products without interfering
with their quality. That’s why most DevOps enterpris-
es begin with the adoption of continuous integration
practices: to ensure that everything works together.

Continuous testing involves testing a software applica-
tion beginning in its early stages and automating test-

ing throughout the development lifecycle. This helps
the team examine the quality of the product at every
stage of the continuous delivery process. And this
process is not limited to only testers and developers; it
also involves the contribution of stakeholders, opera-
tions, and even the customer. Continuous testing is an
integral factor in the DevOps equation.

If continuous testing is performed properly, it delivers
quick and uninterrupted insight into the quality of
every new build of your software. This information can
help you analyze whether the application is prepared
to go through the delivery pipeline.

For example, when the code in a source code server
like Jenkins is verified by developers, a set of automat-
ed unit tests is executed in the continuous process. If
the tests don’t pass, the build will be rejected, and the
developers will be notified about it. If the tests pass,
the code will be sent to the QA servers for functional
and load testing. Then those tests are executed in
parallel, and if they pass the build, the application will
be deployed in production.

Key Points for Continuous Testing Adoption
Before you begin implementing continuous testing in
your team, there are a few points to keep in mind.

The idea of continuous testing is to implement testing
early in the software development lifecycle and at
each branch involved in your CI/CD (continuous inte-
gration and delivery) pipeline. So before you transition
a code change to the production environment, you
should already have it validated at the staging ones.

This could be challenging, as you need to make sure
that all your staging environments are exact replicas
of your production. This requires more resources,
bandwidth, and infrastructural cost. And even if you
do have all the changes pushed to the staging envi-
ronments, you can’t be sure about pushing them to
production just because they worked in the staging
environments, as your production web application
will usually be facing a considerable amount of user
interaction. The fact that there is more web traffic in
your production environment compared to the stage
environment is one of the common things testers
often forget. If you are short on the resources and in-
vestment required to maintain different stage testing
environments, then continuous testing is probably not
a good idea for you.

You also must be ready with your tools arsenal.
You need to have the right automation tools on
board for effective implementation of continuous
testing in DevOps.

If continuous testing
is performed properly,
it delivers quick and
uninterrupted insight
into the quality of
every new build of
your software.

13C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

This means you need to have the tools required for
each layer of the test automation pyramid—UI testing,
API testing, and unit testing—because you can’t expect
one tool to cover everything for you. For example, if
you are performing automated browser testing, you
would require unit testing frameworks to validate your
code changes at an earlier stage in the continuous

deployment pipeline. However, at a later stage, you
would need an end-to-end test automation framework.

In continuous testing, you are testing a single change
on multiple test environments before deploying into
production. A release may contain a bucket of feature
changes, so you will be testing numerous code chang-
es at multiple test environments, and for each code
change you also need to perform regression testing on
each stage environment. All of this could be time-con-
suming unless you know how to put parallel testing to
best use. Many automation frameworks can execute
multiple test scripts simultaneously, which will speed
up the continuous testing through your CI/CD pipeline.

Also be sure to recognize false negatives and false
positives. They are more common than you may know!
When you execute a test automation script, it may
show an execution error even if the system is working
fine, or the automation testing script may show the
test execution as successful even when the system
met with errors. While either is dangerous, false pos-
itives can be more devastating because you believe
everything is good to go and then you get an outage.

Plan your rollbacks thoroughly. Even if you use all the
best practices for continuous testing and CI/CD, there
is no guarantee that the build won’t break in produc-

tion. Always be ready for the worst scenarios. Make
sure your data is backed up before you push changes
to production. In case things go south, you can roll
back to the previous production version quickly and
perform a round of smoke testing to ensure the web
application functions well again.

Keep in mind that when you roll back from the pro-
duction environment, you can’t just validate your
pre-production situation and commit the changes
again. You need to evaluate the entire pipeline to
make sure there are no loose ends, as well as all your
test environments, because you don’t want to post-
pone the same release cycle twice.

Plan your rollbacks
thoroughly. Even if you
use all the best practices
for continuous testing
and CI/CD, there is no
guarantee that the build
won’t break in production.

14C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

Integrating QA and DevOps
The testing and technical teams should work hand in
hand to ensure quality throughout every step in the
software development lifecycle.

When integrating QA into DevOps practices—known
by the term “QAOps”—the testing team should adapt
and adopt certain quality processes:

• They should strive to detect bugs at the earliest
point in the development lifecycle and prevent
potential bugs from reappearing in the
production cycle

• They are responsible for highlighting issues in the
process and recommending necessary changes

• They must ensure that all the environments re-
quired for testing are standardized with automated
deployment

• Apart from finding and preventing bugs, they
should also focus on improving the overall quality
of the product

Some people in the software industry think the
requirement for QA is decreasing with the rise of
DevOps due to automated processes. But that’s
not completely true. Though automated testing
techniques are advanced and fast, they also require
continuous human intervention. Companies that lack

enough QA professionals and resources are not likely
not to achieve their customers’ requirements, mostly
when it comes to updates and continuous changes.

DevOps was created to make developers think in
synchronization with software testers, not to replace
them. Software development processes are becom-
ing faster through continuous deployment to meet
ever-growing customer demands, and integrating QA
with DevOps can help you fulfill all your objectives.

The integration of the QA process into DevOps also
helps you manage various risks, making sure the end
results are robust and more stable. QAOps is like a
fitness regimen for software, as it makes it easy to de-
tect bugs frequently and on time so you can tell when
your applications are fit to run.

There are a couple of patterns for integration of QA
into DevOps that teams can adopt:

• Try conducting an exploratory test before any new
feature is merged into the master codebase. The
tryout tests are designed to ensure the system is
adequately covered to deliver accurate results

• Before you transmit a code change, make sure
that your QA, developers, and other stakeholders
involved in the continuous testing process are ready
with their testing checklist. This checklist should
include all the valid and invalid test scenarios they
need to consider along with the expected behavior
over specific test environments

Every business venture, company, and enterprise
operates differently, so the ways of adopting QAOps
may also differ. But the two suggestions above can be
implemented across any software team.

You cannot deliver a comprehensive and quality ser-
vice without a QA testing strategy, so QA is essential
to the DevOps process. Integrating QA processes into
DevOps operations helps both the testing and tech-
nical teams handle dynamic software environments
and situations, deliver at speed throughout the CI/CD
pipelines, and ensure the quality of the product—as
well as customer satisfaction.

DevOps was created to
make developers think
in synchronization with
software testers, not to
replace them.

15C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

Every business is now serious about having a branded
mobile presence to drive growth and build a reputa-
tion. But when it comes to app development, many
companies still aren’t sure where to begin.

The DevOps approach has completely transformed the
mobile app development scenario, and it’s a good op-
tion for any business looking to create an app. DevOps
facilitates collaboration between developers, opera-
tions staff, and project managers to better fulfill the
objectives of an enterprise app development project.

Bringing together the development and operations
teams on the platform has solved many problems in
mobile app development. These are some of the key
benefits of a DevOps approach:

• Continuous delivery
• Improved customer experience
• Quicker bug fixes
• Enhanced employee engagement
• Fast product delivery
• Increased stability of the development environment
• Easy and smooth deployments

• More opportunity and time for innovation
• A boost to efficiency
To adopt a DevOps approach for your app develop-
ment, you need to consider these important factors.

Continuous Planning
When you are planning for a new mobile app that will
be representing your business, get every functionary
of your company, including developers, operations,
project managers, and various other stakeholders, on
board. Make every team member involved in planning
and deciding the development scope.

Continuous Integration
Continuous integration is about integrating the code
of one group of developers with that of others. A
DevOps approach allows various teams to build differ-
ent parts of the app and continuously integrate them
for testing and evaluation. This approach encourages
faster development while building the app.

Continuous Testing
Mobile app testing is a tricky affair because the test
outcome can be different from simulators to actual

devices, and you have to incorporate manual testing
beside automation testing tools. To make it more
challenging, the same app needs to be tested across
multiple versions of all popular operating systems. A
continuous monitoring of the testing results is needed
across devices, users, tools, and OS versions. This
approach helps deal with the multiplicity of the testing
scope and problems while still ensuring continuous
value addition.

Continuous Delivery
Continuous delivery is a key DevOps practice that en-
courages constantly updating the production environ-
ment with the changes that can influence the outcome.

Continuous Deployment
Through continuous deployment, the DevOps project
helps to deploy the changes to the finished app auto-
matically. This keeps the app updated continuously by
bringing changes to the live app in real time.

While adapting to the DevOps approach of developing
a mobile app has its share of challenges, the benefits
are worth the effort.

A DevOps Approach to Mobile App
Development
Juned Ghanchi

16C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

Are you just getting started with
continuous testing? Find out what you
can do to avoid five common mistakes
on your path to becoming a mobile
continuous testing genius.

With all the excitement and buzz around continuous
test automation for mobile app and mobile web test-
ing, it’s only natural to be curious. What does contin-
uous testing mean for your developers and testers?
What can your team accomplish with more speed and
automation in your corner?

But, for enterprise mobility teams that are primarily le-
veraging manual testing the notion of moving testing
from “your hand to the cloud” can be a little daunt-
ing. But there is no reason to be nervous if you plan
carefully and set yourself up for success right from
the beginning. A successful beginning yields a smooth
and precise continuous testing strategy that increases
performance, app quality, DevOps and overall agility.

Through my work with our customers and from
helping their enterprise mobility teams on the path
to continuous testing, I’ve identified five common
roadblocks that mobile developers and testers often
stumble over when starting out. Here’s what you can
do to avoid these bumps in the road and to begin your
continuous testing journey on the right foot.

Mistake to Avoid #1: Using the Wrong
People
When getting started with continuous testing, don’t
use testers that are geared for manual testing only.
Because continuous testing relies on test automation,
it is important to have testers on your team expe-
rienced with automation principles. While manual
testers are useful for making sure that the app is easy
to use, that it meets business objectives, and that it
is capable of receiving 5-star ratings, test automation
requires a different set of skills.

Instead you should dedicate a team in your mobile
testing lab with automation experience using their

test automation tool of choice. Some automation tools
like Appium® may require more experience in coding
than Tricentis Tosca® or Micro Focus UFT. The team
will need to work on building out a framework and
a continuous testing pipeline followed by working
together to establish a repeatable set of tests.

5 Mistakes to Avoid When Beginning
Mobile Continuous Testing
By Steve Orlando

17C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://mobilelabsinc.com/blog/mobile-app-testing-the-human-touch-and-automation
https://mobilelabsinc.com/blog/mobile-app-testing-the-human-touch-and-automation
https://mobilelabsinc.com/solutions/your-need/automated-testing
https://mobilelabsinc.com/blog/top-10-automated-testing-tools-for-mobile-app-testing

Mistake to Avoid #2: Going Rogue
I come across a lot of teams doing mobile test auto-
mation, but the most successful teams are integrated
and/or work closely with the development team. Why
are they more successful? I believe it is due to better
communication. Let’s compare the experience of be-
ing integrated with development as opposed to going
at it alone below. I think you’ll discover that you get
more out of collaboration then being the Lone Ranger.

Working closely together means that the teams tend
to solve issues faster and help each other maintain
high quality apps. When working together the goals
are aligned and when building out a continuous
testing strategy, all the stakeholders are invested in
the outcome.

How does this collaboration play out in continuous
testing? Well, the DevOps team will help get the au-
tomated tests to run with the application build jobs.
If tests fail, then development and QA teams are both
notified and issues can be solved faster.

Automated tests can be created easier with develop-
ment buy in. Often the development team does not
know the best way to make applications accessible for
automation. Without buy-in, testing teams can strug-
gle to write automated tests or require larger efforts
than needed if developers do not make the required
applications accessible (setting the content-desc and re-
source-id for android; name and accessibility-id for iOS.)

Don’t get me wrong, there are many teams that just
need to produce testing results and are suited to go
at it alone. But when teams go rogue it is a harder
hurdle to overcome without development buy-in to
the testing efforts.

Mistake to Avoid #3: Building Your Own
Testing Framework
While it may be tempting to use your team’s advanced
skills to build your own testing framework, it is a strat-
egy that can sometimes backfire on you. Particularly in
the area of support where issues may be hard to diag-
nose and fix. Often it is necessary and even comforting

to have a trusted team of individuals with a knowledge
base that you can tap into to help your team push
toward a successful continuous testing strategy.

The thing I love about Mobile Labs’ support team
is that they provide answers about any automated
test scripting questions to our customers. This often
includes answering questions that are usually hard to
diagnose, such as when a team is using a custom-built
framework to manage data, test flows, reporting, and
parallelization. It can be a timely process and getting
to a resolution can be difficult when you’re going
rogue. Instead, it may be easier for teams to get up
and running faster with a continuous testing frame-
work by exploring tools and test frameworks that
support many different programming languages that
have broad support.

Most of these frameworks are free and open source.
Leveraging these tools makes it easier for the follow-
ing reasons:

Reduced startup time
An established framework can be implemented
quickly, and automation tests can be written immedi-
ately. There is no time wasted building out a complex
testing framework that mimics the same functionality
as one already available.

The thing I love about
Mobile Labs’ support
team is that they
provide answers about
any automated test
scripting questions to
our customers.

18C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://mobilelabsinc.com/support
https://mobilelabsinc.com/support
https://mobilelabsinc.com/support
https://mobilelabsinc.com/support
https://mobilelabsinc.com/support

Lower training and maintenance costs
When a problem or a lack of knowledge exists, it is
easy to find an example online using the available
framework. In most cases the custom-built framework
for the company is not documented, so automation
users have to rely on trial and error to work within the
framework. Should the subject matter expert of the
framework leave the company, the automation efforts
could stall should the testing project change or new
automation efforts are needed.

Can be extended for many scenarios
Most open-source frameworks are adaptable, so
changing something that doesn’t work in your envi-
ronment can be done with little effort. For instance,
if you need to have some custom functionality to
connect to a device for a test, you can extend the test
functions to automatically handle this and keep the
framework easy to use.

Handles parallel testing execution
Implementing parallel testing is hard but worth the
effort. In fact, you can see this for yourself with our
handy calculator.

For example, parallel testing with Appium requires
knowledge of spinning up new threads for execution

which is a very complex level of development. What
can happen is that some threads start up before others
finish and Appium resources and devices can already
be in use. Either a test will fail to run or a new test caus-
es an existing test to fail without any evidence to why
the test fails. This is difficult to diagnose and debug.
Given the above advice, I will provide one word of cau-
tion, don’t go overboard. I have even come across a
test framework that used an Excel driven table to drive
a TestNG framework that called JUnit tests.

Mistake to Avoid #4: Only Using
Simulators
On the subject of testing using simulators v. real devic-
es, I am an advocate for testing on real devices for sev-
eral reasons. I recently wrote a blog post on this topic,
which you can view it here for a more in-depth study.

But to briefly summarize, despite having built a pow-
erful Simulator (Apple) and an Emulator (Android),
both vendors still advocate for testing on a real device.
Clearly, while simulators and emulators can help
developers and testers quickly test certain elements of
mobile apps and mobile websites before deployment,
they should not be considered a replacement for test-
ing on a real device.

19C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://mobilelabsinc.com/paralleltesting
https://mobilelabsinc.com/blog/simulators-vs-emulators

For real results and to get the most accurate insight
into how an app or mobile website will function in the
real world, enterprise mobility teams should test on
real devices.

Consider this excerpt from Apple’s Simulator Help
Overview (emphasis added):

“Simulator is a great tool for rapid prototyping and de-
velopment of your app allowing you to see the results
of changes quickly, debug errors, and run tests. It is
also important to test your app on physical devices as
there are hardware and API differences between a sim-
ulated device and a physical one. In addition to those
differences, Simulator is an app running on a Mac and
has access to the computer’s resources, including
the CPU, memory, and network connection. These
resources are likely to be very different in capacity
and speed than those found on a mobile device
requiring tests of performance, memory usage, and
networking speed to be run on physical devices.”

Next, consider this quote from the Android Studio
User Guide (emphasis added):

“When building an Android app, it’s important that
you always test your app on a real device before
releasing it to users.”

Mistake to Avoid #5: Building Your Own
Mobile Lab
Building and running a functioning mobile testing lab
on your own can be challenging. From keeping up
with and managing devices, making sure that develop-
ers and testers have the tools and resources they need
to deliver on time, and the volume of tests that need
to be run, there are a lot of moving pieces and parts.

Also, if you’re working with Appium, building and run-
ning your own Appium servers is not only time-con-
suming and expensive to set up on your own, but
slow performance and slow scripting can cause your
enterprise mobility team additional stress.

It is also important to remember that when building
your own mobile testing lab that devices are typical-
ly only dedicated to functions like test automation.
While for manual testers, the testing devices are still
in testers’ and developers’ hands to keep up with and
manage.

By choosing not to build your own mobile testing lab
and implementing a device cloud solution your team
solves all the tough challenges like Appium server
setup. The team can also use the same devices for
manual and automated testing from the device cloud
where the devices are always online and available.

With so many existing solutions available, why rebuild
the wheel when you don’t have to?

Just don’t do it. Seriously.

By avoiding these five mistakes, your mobile develop-
ment and testing teams can rest assured that em-
barking on the continuous testing journey can be as
painless as possible. With the right tools, support and
methodology in place you safeguard your processes
from unnecessary conflict and difficulties that could
prevent your team from doing what they do best—
providing superior mobile experiences.

Want to learn more about building a successful con-
tinuous delivery pipeline? You can download our latest
eBook on the subject here.

For real results and to get the
most accurate insight into
how an app or mobile website
will function in the real world,
enterprise mobility teams
should test on real devices.

20C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://help.apple.com/simulator/mac/current/#/devb0244142d
https://help.apple.com/simulator/mac/current/#/devb0244142d
https://developer.android.com/studio/run/device
https://developer.android.com/studio/run/device
https://mobilelabsinc.com/assets/documents/ebook/continuous-delivery-pipeline-ebook.pdf
https://mobilelabsinc.com/assets/documents/ebook/continuous-delivery-pipeline-ebook.pdf

Climb into the “wayback machine” with me for a min-
ute. Do you remember the board game Mousetrap? If
you’re familiar with this game, then you know that each
action in the game builds toward an eventual chain
reaction that is necessary for you to capture your oppo-
nents’ mice. Each step in the game is dependent on the
step right before it and right after it.

Let’s compare this scenario to building a continuous
delivery process flow. You know that you have a series
of steps that must be created and successfully executed
to build a mobile application. But, along the way your
team may find issues that need to be addressed quickly.

By setting up a continuous delivery process flow, every
member of the enterprise mobility team can have the
agility and flexibility to debug and to keep the app
functioning correctly.

1. Create a Delivery Process
The first step is choosing the right tool to create a
delivery process. There are many CI/CD tools that
you can choose, from commercial options (Team City,
Bamboo, Urban Code) and open-source (Jenkins,
GoCD, Concourse) that your team can explore. If you
already have a CI/CD tool, then it is probably best to
extend this tool to include your mobile delivery.

2. Create the Pipeline Needed to Build the App
The next step is to create the pipeline needed to build
the application. This means checking out the source

Why Building a Continuous Delivery
Pipeline is like a game of Mousetrap
By Mobile Labs

How to Build a Continuous
Delivery Pipeline

21C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://www.jetbrains.com/teamcity/
https://www.atlassian.com/software/bamboo
https://www.urbancode.com/
https://jenkins.io/
https://www.gocd.org/
https://concourse-ci.org/

code and compiling the app. During the build, it is rec-
ommended to make your unit tests blocking, meaning
that the entire build process will fail if a unit test fails.
This gives the fastest feedback to the development
team to create a fix.

3. Install the App on a Device For Testing
Once the unit tests are passed, the next step would be
to install the application to the device for testing. With
a device cloud, this can be done through add-ins or
API calls to upload the application to the cloud infra-
structure and install it on the appropriate devices.

4. Run Automated Tests Against the Device
Now that the application is built, the unit tests are
passed, and the application is uploaded and installed
on the device, it is time to run automated tests against
the device. To do so, simply use the built-in mecha-
nism or add-in to execute the tests. For Appium tests,
this usually means to have your test code pulled from
the repository or test management system and exe-
cuted through the build process of the test framework
you are using. For those that are using Java, simply
execute the JUnit or TestNG tests of your Maven or
Gradle builds.

5. Manual Testing and QA
The test results are then used to determine if the build
has passed and is ready for internal teams to manual-
ly run through the application to find any errors or ad-
missions. This is usually the final step before declaring
it ready to go out.

The good thing about this process, is that it makes it
easy to repeat for every change because the whole
process is automated. This speeds up delivery and
provides faster feedback. The faster it is to detect an
issue, usually the faster it is to fix. The goal is to speed
up delivery and increase quality.

But what happens next? After successfully setting
up a continuous delivery flow with all necessary
tests in place, you need a way to collect results and
to receive real time reports. After all, how can you
catch and fix any issues if you are unaware of any
trouble in the first place?

The answer lies in setting up a continuous feedback
loop. By setting up a closed loop process, your team
will receive feedback and notifications about any issues
as soon as they occur. When you have quick feedback,
your mobile developers, testers and QA can isolate
issues and debug quickly to keep releases on track.

Get User Feedback

22C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://mobilelabsinc.com/blog/4-techniques-to-optimize-your-test-automation-framework
https://mobilelabsinc.com/blog/4-techniques-to-optimize-your-test-automation-framework
https://mobilelabsinc.com/blog/5-things-to-consider-when-getting-started-with-appium

But, what should you include in your feedback loop?

For your enterprise mobility team to really be agile,
you need to receive feedback in a way that is easy to
digest. With so many tests running, your team could
potentially receive “feedback overload” making it dif-
ficult, if not virtually impossible, for your team to sort
through. To make feedback meaningful and easy for
your team to act on, you want to put QA testing solu-
tions in place to give you targeted, focused feedback.
Here are four of the most important sources for your
team to monitor.

4 Important sources for feedback

1. Automated test results
The automated tests that you set up, whether unit,
functional or performance will feed their results back
into your continuous delivery pipeline or to a test case
management system. Regardless of where you are
getting your results, they must be managed and an-
alyzed by your team. Any execution issues or defects
must be addressed by your team quickly to stay on
track with releases. Make sure to make your auto-
mated tests rock solid so that in the event of a failure,
there is no guessing if the test failed due to issues
with the test or with the product.

2. APM monitoring
When making sure that your app is running at its

peak performance, it is important to measure how the
system is running. APM monitoring tools can help pro-
vide real time performance metrics about the health
of the system. APM covers a lot of different areas
such as performance and availability of the systems,
transaction timing on the device and the network, as
well as bottleneck detection. All of the data provided
gives you insights into how your application is working
from the app side all the way back to the systems that
support the app. If an issue arrises you can get an im-
mediate alert if something is going haywire. Once an
alert is triggered, everyone can jump in and diagnose
the issue quickly. Making sure that your critical trans-
actions are successful is key to having a quality app.

One way to get earlier feedback from APM is to
leverage the APM tools during pre-production testing.
Having this data before the app hits the users can help
narrow down issues that can be fixed quickly, reduc-
ing costly issues one the app has been deployed.

3. User monitoring and feedback
If you want a better understanding of how your users
are interacting with your mobile apps or websites,
then user monitoring reports can help you better
understand their behavior. By reviewing these reports,
you can see which features of an app are being used,
or how users are engaging with different areas on a
mobile website.

User monitoring delivers actual, real time information
about key trends, user-timing and other metrics. You
can use these findings to innovate and improve the
mobile experience.

4. Direct End User Feedback
But, test results are not the only feedback your team
receives about apps or mobile websites. Don’t forget
about your users, or mobile consumers. This audience
has high expectations for mobile experiences, and
checking out any feedback on your app or mobile
website is beneficial for you team to consider when
making improvements.

One way to get feedback is to monitor the app store
reviews. Figuring out why your “star” rating is moving
up or down gives valuable feedback about the quali-
ty of your application. Reviews can give insights into
problems with the application, but it can also give you
insights to what customers want more of in the app or
on the mobile website.

Early feedback can also come from early release
programs for your application. Apple has a program
called TestFlight to get early releases of your applica-
tion out to end users so you can get feedback earlier.
You can also use crowd sourced testing programs, like
Rainforest and Applause to get users to run through
your application and provide valuable feedback.

23C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://mobilelabsinc.com/blog/11-tips-to-create-a-successful-mobile-device-testing-lab
https://mobilelabsinc.com/blog/11-tips-to-create-a-successful-mobile-device-testing-lab
https://developer.apple.com/testflight/
https://www.rainforestqa.com/
https://www.applause.com/

Additional Resources
M O R E I N F O R M A T I O N F O R S O F T W A R E P R O F E S S I O N A L S

Accelerating Mobile App Transformation
10 Tips to Build a Successful Mobile Testing Lab

What’s the ROI of Parallel Testing Your Mobile Apps?

Automated Testing: How To Accelerate Mobile App Transformation

Jump Start Mobile App Testing

ROI
CALCULATOR

INFOGRAPHICS

SURVEY REPORT

WHITE PAPER

CONTACT MOBILE LABS info@mobilelabsinc.com | +1 (404) 214-5804 | www.mobilelabsinc.com

24C O P Y R I G H T 2 0 2 0

3
Bringing Continuous
Testing to Your
Organization

8
Why You Need
Continuous Testing in
DevOps

12
How Continuous Testing
is Done in DevOps

16
A DevOps Approach
to Mobile App
Development

17
5 Mistakes to Avoid
When Beginning
Mobile Continuous
Testing

21
Why Building a
Continuous Delivery
Pipeline is like a game
of Mousetrap

24
Additional Resources

SPECIAL REPORT Continuous Testing for Mobile

https://mobilelabsinc.com/assets/documents/product-lit/mobile-labs-infographic-accelerating-mobile-app-transformation.pdf
https://mobilelabsinc.com/assets/documents/uploads/10-tips-to-build-a-successful-mobile-testing-lab-mobile-labs.pdf
https://mobilelabsinc.com/paralleltesting
https://mobilelabsinc.com/assets/documents/eme-and-mobile-labs-survey-report-accelerate-mobile-app-transformation.pdf
https://www2.mobilelabsinc.com/jump-start-mobile-testing-lab-white-paper
mailto:info@mobilelabsinc.com
https://www.mobilelabsinc.com

